

Originalbetriebsanleitung

LaserQualityMonitor LQM

LQM 20, LQM 200/500, HP-LQM II (10 kW)

LaserDiagnosticsSoftware LDS

WICHTIG!

VOR DEM GEBRAUCH SORGFÄLTIG LESEN.

ZUR SPÄTEREN VERWENDUNG AUFBEWAHREN.

Inhaltsverzeichnis

1	Grun	ndlegende Sicherheitshinweise	9
2	Sym	bolerklärung	11
2	Übo	r diasa Patriabsanlaitung	10
5	Obei		12
4	Bedi	ingungen am Einbauort	12
5	Einle	eitung	13
	5.1	Laserstrahlvermessung	13
	5.2	Systembeschreibung	14
	5.3 5.4	Messprinzip	
6	Tran	snort	17
<u> </u>	man		
7	Mon	tage	17
	7.1	Vorbereitung und Einbaulage	17
	7.2	LaserQualityMonitor LQM manuell ausrichten	
		7.2.1 AUSTICHTHITEN	18
		7.2.3 Manuelle Ausrichtung der 1. Vorstufe und Feiniustage	19
		7.2.4 Manuelle Ausrichtung der 2. Vorstufe	
	7.3	LaserQualityMonitor LQM montieren	21
		7.3.1 LQM 20/200 ohne Bodenplatte montieren	21
		7.3.2 LQM 200/500 mit Bodenplatte montieren	
		7.3.3 HP-LQM II mit Bodenplatte montieren	23
8	Kühl	kreis anschließen (nur HP-LQM II und 500 W-Version wassergekühlt)	24
	8.1	Wasserqualität	24
	8.2		
	8.3 8.4	Luttleuchtigkeit	
	0.4	8 4 1 HP-I QM II (10 kW)	20
		8.4.2 LQM (500 W)	
9	Elek	trischer Anschluss	27
	9.1	Anschlüsse	
	9.2	Pinbelegung	28
		9.2.1 Spannungsversorgung	28
		9.2.2 Eingang externer Trigger	
	0.0	9.2.3 Ausgang Interner Trigger	
	9.3	9.3.1 Temperaturkontrolle	29 20
		9.3.2 Externer Sicherheitskreis (nur beim HP-LQM II mit 2. Vorstufe)	
	9.4	Anschluss an den PC und Stromversorgung anschließen	
10	Statu	us-LEDs	32

11	Insta	llieren un	d konfigurieren der LaserDiagnosticsSoftware LDS	33
	11.1	System	/oraussetzungen	33
	11.2	Software	e installieren	33
	11.3	Ethernet	tverbindung einrichten	34
		11.3.1	IP-Adresse eingeben	34
		11.3.2	Verbindung zum PC aufbauen (Menü Kommunikation > Freie Kommunikation	1)35
		11.3.3	Standard-IP-Adresse des Gerätes ändern (Menü Kommunikation > Freie	
			Kommunikation)	36
12	Besc	hreibung	der LaserDiagnosticsSoftware LDS	38
	12.1	Grafisch	e Benutzeroberfläche	38
		12.1.1	Die Menüleiste	40
		12.1.2	Die Werkzeugleiste	41
		12.1.3	Menü-Übersicht	42
	12.2	Datei		45
		12.2.1	Neu (Menü <i>Datei > Neu</i>)	45
		12.2.2	Öffnen (Menü Datei > Öffnen)	45
		12.2.3	Schließen/Alle Dateien Schließen (Menü Datei > Schließen/Alle Dateien	15
		1221	Schilleberi) Sneichern (Menii Datei > Sneichern)	40
		12.2.4	Speichern unter (Menü Datei > Speichern unter)	40
		12.2.0	Export (Menii Datei > Export)	
		12.2.0	Messeinstellungen laden (Menii Datei > Messeinstellungen laden)	
		12.2.7	Messeinstellungen speichern (Menü Datei > Messeinstellungen speichern)	46
		12.2.0	Protokoll (Menü Datei > Protokoll)	46
		12.2.10	Drucken (Menü Datei > Drucken)	
		12.2.11	Vorschau Drucken (Menü Datei > Vorschau Drucken)	
		12.2.12	Zuletzt geöffnete Datei (Menü Datei > zuletzt geöffnete Datei)	
		12.2.13	Ende (Menü Datei > Ende)	46
	12.3	Bearbeit	ten	47
		12.3.1	Kopieren (Menü Bearbeiten > Kopieren)	47
		12.3.2	Ebene löschen (Menü <i>Bearbeiten > Ebene löschen</i>)	47
		12.3.3	Alle Ebenen löschen (Menü Bearbeiten > Alle Ebenen löschen)	47
		12.3.4	Benutzerlevel ändern (Menü <i>Bearbeiten > Benutzerlevel ändern</i>)	47
	12.4	Messun	g	48
		12.4.1	Messumgebung (Menü <i>Messung > Messumgebung</i>)	48
		12.4.2	Sensorparameter (Menü <i>Messung > Sensorparameter</i>)	49
		12.4.3	Einstellung Strahlsuche (Menü <i>Messung > Einstellungen: Strahlsuche</i>)	50
		12.4.4	CCD Geräteinfo (Menü <i>Messung > CCD Geräteinfo</i>)	51
		12.4.5	CCD Einstellung (Menü <i>Messung > CCD Einstellung</i>)	52
		12.4.6	LQM-Justage (Menü <i>Messung > LQM-Justage</i>)	55
		12.4.7	Leistungsmessung (Menü <i>Messung > Leistungsmessung</i>)	55
		12.4.8	Einzelmessung (Menü <i>Messung > Einzelmessung</i>)	56
		12.4.9	Kaustik (Menü <i>Messung > Kaustik</i>)	60
		12.4.10	Start Justiermode (Menü <i>Messung > Start Justiermode</i>)	63
		12.4.11	Optionen (nur für advanced User (Menü <i>Messung > Optionen</i>)	63
	12.5	Darstellu		65
		12.5.1	Falschfarben (Menu Darstellung > Falschfarben)	
		12.5.2	Faischtarben (getiltert) (Ivienu Darstellung > Faischtarben (getiltert))	
		12.5.3	Isometrie (Menu <i>Darstellung > Isometrie</i>)	67
		12.5.4	Isometrie 3D (Menu Darstellung > Isometrie 3D)	68
		12.5.5	Upersicht 86 % bzw. 2. Woment (Wenu Darstellung > Upersicht (86%)/	00
		1050	(2. IVIOITIENT)	
		12.3.0 1057	Rauslik (Ivienu Darstellung > Rauslik)	
		12.0.7	Nulsualii (ivieliu Dalsielluliy > nulsualii)	
		12.0.0	Symmetriepididing (iviend Darstending > Symmetriepididing)	

	12.5.9 Feste Schnitte (Menü <i>Darstellung > Feste Schnitte</i>)	77
	12.5.10 Variable Schnitte (Menü <i>Darstellung > Variable Schnitte</i>)	78
	12.5.11 Graphische Ubersicht (Menü <i>Darstellung > Grafische Ubersicht</i>)	80
	12.5.12 Systemstatus (Menü Darstellung > Systemstatus)	80
	12.5.13 Evaluierungsparameter (Menü <i>Darstellung > Evaluierungsparameter</i>)	81
	12.5.14 Evaluiere Dokument (Menü <i>Darstellung > Evaluiere Dokument</i>)	
	12.5.15 Farbtateln (Menü Darstellung > Farbtateln)	
	12.5.16 Werkzeugleiste (Menü Darstellung > Werkzeugleiste)	
	12.5.17 Position (Menu <i>Darstellung > Position</i>)	85
	12.5.18 Evaluation (Option) (Wenu <i>Darstellung > Evaluation</i>)	85
	12.6 Kommunikation	8/
	12.6.2 Freio Kommunikation (Menü Kommunikation > Gerale Suchen)	01
	12.6.2 Listo gosuchtor Goräto (Monü Kommunikation > Listo gosuchtor Goräto)	07 88
	12.0.5 Liste gesuchter Gerate (Mend Kommunikation > Liste gesuchter Gerate)	
	12.7 OKipt	
	12.7.2 Auflisten (Menü Script > Auflisten)	
	12.7.3 Python (Menü Script > Python)	
13	Messen	90
	13.1 Sicherheitshinweise	90
	13.2 Auswahl und Wechsel der Messobjektive und des Neutralglasfilters	91
	13.2.1 Auswahl des Messobjektivs	91
	13.2.2 Wechsel des Messobjektivs oder des Neutralglasfilters	92
	13.2.3 Neutralglasfilter	93
	13.3 Laserstrahl mit der LaserDiagnosticsSoftware LDS ausrichten	94
	13.3.1 Laserstrahl an Position z2 im Messfenster ausrichten	94
	13.3.2 Fehlwinkel des Laserstrahls über die Position z1 und z3 anzeigen	95
	13.4 Messeinstellungen in der LaserDiagnosticsSoftware LDS eingeben	96
	13.4.1 CCD Einstellungen (<i>Menü Messung</i> > CCD Einstellungen)	
	13.4.2 Messumgebung (Menu <i>Messung > Messumgebung</i>)	
	13.5 Flussolagramm einer Messung	
	13.5.1 Laser manuell und mit der LaserDiagnosticsSoftware LDS ausrichten	
	13.5.2 Kaustikgrenzen besummen	
	13.5.5 Kausukmessung durchluhren	
<u>14</u>	Wartung und Inspektion	100
15	Lagerung	100
16	Maßnahmen zur Produktentsorgung	100
17	Konformitätserklärung	101
18	Technische Daten	102
10		
19	Abmessungen	103
	19.1 LaserQualityMonitor LQM 20 Basisgerät	103
	19.2 LaserQualityMonitor LQM 200/500 (ohne Bodenplatte)	104
	19.3 HighPower-LaserQualityMonitor HP-LQM II mit optionalem Faserhalter	105

20	Anha	ng		106
	20.1	Faserada	apter montieren	106
	20.2	Werkseir	nstellungen am LQM UV ändern	107
	20.3	HighYAG	a-Kollimationsmodul	109
		20.3.1	Kenndaten des Kühlsystems für das HighYAG-Kollimationsmodul	110
		20.3.2	Schema des Kühlkreises für das HighYAG-Kollimationsmoduls	111
		20.3.3	Schema des Kühlkreis für den HP-LQM II	111
		20.3.4	HighYAG-Kollimationsmodul demontieren	112
		20.3.5	Auswahl des Messobjektivs bei einem montierten HighYAG-Kollimationsmodul	113
	20.4	Optische	er Pfad im HighPower-LaserQualityMonitor HP-LQM II (mit Kollimator)	115
	20.5	Beschrei	bung des MDF-Dateiformats	116
	20.6	Messen	von gepulster Laserstrahlung	117
		20.6.1	Auswahl der Messkonfiguration	119
		20.6.2	Einfluss der Pulsparameter auf die Integrationszeitsteuerung	119
		20.6.3	Beispiele für den getriggerten Messbetrieb	123
		20.6.4	Zusammenfassung	124
21	Grun	dlagen de	er Strahldiagnose	125
	21.1	Laserstra	ahlparameter	125
		21.1.1	Rotationssymmetrische Strahlen	126
		21.1.2	Nicht rotationssymmetrische Strahlen	127
	21.2	Berechn	ung der Strahldaten	128
		21.2.1	Bestimmung des Nulllevels	128
		21.2.2	Bestimmung der Strahllage	129
		21.2.3	Radiusbestimmung mit dem 2. Moment der Leistungsdichteverteilung	129
		21.2.4	Radiusbestimmung mit der Methode des 86% igen Leistungseinschlusses	130
		21.2.5	Messfehler	130
		21.2.6	Fehler bei der Nullevelbestimmung	131
		21.2.7	Übersteuerung des Signals	131
		21.2.8	Fehler durch falsche Wahl der Messfenstergröße	132
	21.3	Formeln,	bzw. Algorithmen zur Rohstrahlrückberechnung des LQM	133

PRIMES - das Unternehmen

PRIMES ist ein Hersteller von Messgeräten zur Laserstrahlcharakterisierung. Diese Geräte werden zur Diagnostik von Hochleistungslasern eingesetzt. Das reicht von CO2-Lasern über Festkörperlaser bis zu Diodenlasern. Der Wellenlängenbereich von Infrarot bis nahe UV wird abgedeckt. Ein großes Angebot von Messgeräten zur Bestimmung der folgenden Strahlparameter steht zur Verfügung:

- Laserleistung
- Strahlabmessungen und die Strahllage des unfokussierten Strahls
- Strahlabmessungen und die Strahllage des fokussierten Strahls
- Beugungsmaßzahl M²

Entwicklung, Produktion und Kalibrierung der Messgeräte erfolgt im Hause PRIMES. So werden optimale Qualität, exzellenter Service und kurze Reaktionszeit sichergestellt. Das ist die Basis, um alle Anforderungen unserer Kunden schnell und zuverlässig zu erfüllen.

1 Grundlegende Sicherheitshinweise

Bestimmungsgemäße Verwendung

Der LaserQualityMonitor LQM ist ausschließlich dazu gebaut, Messungen im oder in der Nähe des Strahlengangs von Hochleistungslasern durchzuführen. Hierbei sind die im Kapitel 18, "Technische Daten", auf Seite 102 angegebenen Spezifikationen und Grenzwerte einzuhalten. Jeder darüber hinausgehende Gebrauch gilt als nicht bestimmungsgemäß. Für eine sachgemäße Anwendung des Gerätes müssen unbedingt die Angaben in dieser Betriebsanleitung beachtet werden.

Das Benutzen des Gerätes für nicht vom Hersteller spezifizierten Gebrauch ist strikt untersagt. Das Gerät kann dadurch beschädigt oder zerstört werden. Zudem besteht eine erhöhte gesundheitliche Gefährdung bis hin zu tödlichen Verletzungen. Das Gerät darf nur in der Art und Weise eingesetzt werden, aus der keine potentielle Gefahr für Menschen entsteht.

Das Gerät selbst emittiert keine Laserstrahlung. Jedoch wird während der Messung der Laserstrahl auf das Gerät geleitet. Dabei entsteht reflektierte Strahlung (Laserklasse 4). Deshalb sind die geltenden Sicherheitsbestimmungen zu beachten und erforderliche Schutzmaßnahmen zu treffen.

Im Messbetrieb muss der Sicherheitskreis (Interlock) des Gerätes mit der Lasersteuerung verbunden sein.

Geltende Sicherheitsbestimmungen beachten

Beachten Sie die nationalen und internationalen Bestimmungen und Normen von ISO/CEN sowie die Vorschriften der Berufsgenossenschaft. Nationale Grundlage der Sicherheitsbestimmungen ist die Arbeitsschutzverordnung zu künstlicher optischer Strahlung (OstrV) und darauf basierend die Technischen Regeln zur Arbeitsschutzverordnung zu künstlicher optischer Strahlung (TROS Laserstrahlung), welche frühere Vorschriften wie z. B. die BGV B2 – Unfallverhütungsvorschrift Laserstrahlung ersetzt.

Erforderliche Schutzmaßnahmen treffen

GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Während der Messung wird der Laserstrahl auf das Gerät geleitet. Dabei entsteht gestreute oder gerichtete Reflexion des Laserstrahls (Laserklasse 4).

Der LaserQualityMonitor LQM darf in keiner der verfügbaren Konfiguration, ohne die folgenden Schutzmaßnahmen zu treffen betrieben werden. Auch bei einer gesteckten Faser im Kollimator oder im Faseradapter müssen sämtliche Schutzmaßnahmen eingehalten werden.

Beachten Sie die folgenden Schutzmaßnahmen.

Wenn sich Personen in der Gefahrenzone sichtbarer oder unsichtbarer Laserstrahlung aufhalten, z. B. an nur teilweise abgedeckten Lasersystemen, offenen Strahlführungssystemen und Laserbearbeitungsbereichen, sind folgende Schutzmaßnahmen zu treffen:

- Schließen Sie den Sicherheitskreis (Interlock) des Gerätes an die Lasersteuerung an. Prüfen Sie die ordnungsgemäße Abschaltung des Lasers im Fehlerfall durch den Sicherheitskreis (Interlock).
- Tragen Sie Laserschutzbrillen, die an die verwendete Leistung, Leistungsdichte, Laserwellenlänge und Betriebsart der Laserstrahlquelle angepasst sind.
- Je nach Laserquelle kann das Tragen von geeigneter **Schutzkleidung** oder **Schutzhandschuhen** notwendig sein.
- Schützen Sie sich vor direkter Laserstrahlung, Streureflexen sowie vor Strahlen, die durch die Laserstrahlung generiert werden (z. B. durch geeignete trennende Schutzeinrichtungen oder auch durch Abschwächung dieser Strahlung auf ein unbedenkliches Niveau).
- Verwenden Sie Strahlführungs- bzw. Strahlabsorberelemente, die keine gefährlichen Stoffe freisetzen sobald sie mit der Laserstrahlung beaufschlagt werden und die dem Strahl hinreichend widerstehen können.

- Installieren Sie Sicherheitsschalter und/oder Notfallsicherheitsmechanismen, die das unverzügliche Schließen des Verschlusses am Laser ermöglichen.
- Befestigen Sie das Gerät stabil, um eine Relativbewegung des Gerätes zur Strahlachse des Lasers zu verhindern und somit die Gefährdung durch Streustrahlung zu reduzieren.

Qualifiziertes Personal einsetzen

Das Gerät darf ausschließlich durch Fachpersonal bedient werden. Das Fachpersonal muss in die Montage und Bedienung des Gerätes eingewiesen sein und grundlegende Kenntnisse über die Arbeit mit Hochleistungslasern, Strahlführungssystemen und Fokussiereinheiten haben.

Umbauten und Veränderungen

Das Gerät darf ohne unsere ausdrückliche Zustimmung weder konstruktiv noch sicherheitstechnisch verändert werden. Das Gerät darf nicht geöffnet werden, um z. B. eigenmächtige Reparaturen auszuführen. Jede Veränderung schließt eine Haftung unsererseits für resultierende Schäden aus.

Haftungsausschluss

Der Hersteller und der Vertreiber der Messgeräte schließt die Haftung für Schäden oder Verletzungen jeder Art aus, die durch den unsachgemäßen Gebrauch der Messgeräte oder die unsachgemäße Benutzung der zugehörigen Software entstehen. Der Käufer und der Benutzer verzichten sowohl gegenüber dem Hersteller als auch dem Lieferanten auf jedweden Anspruch auf Schadensersatz für Schäden an Personen, materielle oder finanzielle Verluste durch den direkten oder indirekten Gebrauch der Messgeräte.

2 Symbolerklärung

In dieser Dokumentation wird auf Restgefahren mit folgenden Symbolen und Signalworten hingewiesen:

GEFAHR

Bedeutet, dass Tod oder schwere Körperverletzung eintreten **wird**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

🚹 WARNUNG

Bedeutet, dass Tod oder schwere Körperverletzung eintreten **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

VORSICHT

Bedeutet, dass eine leichte Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

ACHTUNG

Bedeutet, dass Sachschaden entstehen **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Am Gerät selbst wird auf Gebote und mögliche Gefahren mit folgenden Symbolen hingewiesen:

ESD-gefährdete Bauteile

Vor Inbetriebnahme die Betriebsanleitung und die Sicherheitshinweise lesen und beachten!

Weitere Symbole, die nicht sicherheitsrelevant sind:

Hier finden Sie nützliche Informationen und hilfreiche Tipps.

► Handlungsaufforderung

3 Über diese Betriebsanleitung

Diese Dokumentation beschreibt die Arbeit mit dem LaserQualityMonitor LQM und dessen Bedienung mit der LaserDiagnosticsSoftware LDS.

Bei der Beschreibung der Software wird eine kurze Einführung in die Nutzung für den Messbetrieb gegeben.

i

Diese Betriebsanleitung beschreibt die zum Zeitpunkt der Drucklegung gültige Softwareversion. Da die Bediensoftware laufend weiterentwickelt wird, ist es möglich, dass auf dem mitgelieferten Datenträger eine andere Versionsnummer aufgedruckt ist. Die korrekte Funktion des Gerätes mit der Software ist dennoch gewährleistet.

Sollten Sie trotzdem Fragen haben, geben Sie uns bitte die bei Ihnen installierte Software-Version bekannt. Sie finden die Softwareversion unter dem Menüpunkt: *Hilfe > Über die LaserDiagnosticsSoftware*.

🔂 Setup - Primes Laser Diagnose Software
Available applications What do you want to install?
Please choose the applications/drivers to install, then dick Next.
< Back Next > Cancel

Abb. 3.1: Informationen zur aktuellen Softwareversion LDS

4 Bedingungen am Einbauort

- Das Gerät darf nicht in kondensierender Atmosphäre betrieben werden.
- Die Umgebungsluft muss frei von organischen Gasen sein.
- Schützen Sie das Gerät vor Spritzwasser und Staub.
- Betreiben Sie das Gerät nur in geschlossenen Räumen.

5 Einleitung

5.1 Laserstrahlvermessung

Laserstrahlung in der industriellen Anwendung, ob CO₂-, Nd:YAG-, Dioden- oder Faser-Laser, arbeitet mit nicht sichtbarer Strahlung im infraroten (IR) oder nahen infraroten Spektralbereich (NIR). Eine Veränderung der Strahlqualität oder Leistung ist somit visuell nicht erfassbar und erst im Ergebnis der Anwendung erkennbar und führt unter Umständen zu extrem teurer Ausschussproduktion. Wird der Qualitätsabfall im Fertigungsprozess nicht erkannt, resultiert das in der Regel zu einem späteren Ausfall des Produktes in der Anwendung mit entsprechenden Konsequenzen in Nachbearbeitung, Ersatzleistungen und Imageverlust für den Hersteller.

Hier helfen die Strahldiagnosegeräte von PRIMES zur Messung von Strahlqualität, Fokussierbarkeit und Laserleistung. Eine Prozessüberwachung in der Fertigung mit Laserstrahldiagnosegeräten von PRIMES ermöglicht eine konsequente Qualitätssicherung und erlaubt eine rechtzeitige Erfassung von Fehlfunktionen der Laserstrahlung und deren Behebung.

Die Messgeräte von PRIMES erlauben eine sichere Erfassung der aktuellen Strahlparameter und ermöglichen eine fortlaufende Dokumentation der Strahleigenschaften für die Qualitätssicherung, was eine nicht zu vernachlässigende Anforderung in vielen Industriebereichen wie Automobil- oder Medizintechnik darstellt.

Mit den Geräten von PRIMES zur Strahldiagnose wird die Fehlersuche bei der Laseranwendung wesentlich vereinfacht. Strahlintensitätsprofile, Strahldurchmesser, Strahlkaustik vor oder nach der Fokussierung sowie die anstehende Laserleistung werden direkt gemessen und analysiert. Auf Basis der Messwerte und deren Auswertung kann dann das Wartungs- und Servicepersonal zielgerichtet bei der Instandsetzung arbeiten. Zeitverlust und Anlagenstillstand durch "Herumprobieren" zur Fehlersuche wird nachhaltig vermieden.

Gleiches gilt bei der Prozessoptimierung und Qualifizierung von Prozessfenstern in der Lasermaterialbearbeitung. Nur wenn Fokuslage und -dimension sowie das Intensitätsprofil des Laserstrahles bekannt sind, können Prozesse wie Laserstrahlschneiden, -schweißen oder -bohren an die jeweilige Bauteilgeometrie und Werkstoffauswahl angepasst und die Breite von Prozessfenstern sicher ermittelt werden.

5.2 Systembeschreibung

Der LaserQualityMonitor LQM dient zur Vermessung der Strahleigenschaften einer Strahlquelle entweder in einer Freistrahlmessung über mehrere Meter oder mit gesteckter Faser in einem Faserhalter oder Kollimator. Es können sowohl cw-Laser und mittels eines internen Triggers auch gepulste Laser vermessen werden.

Im Basisgerät sind die Elektronik sowie alle abbildenden optischen Komponenten verbaut. Das Basisgerät kann durch Vorsatzmodule mit Strahlteiler, Absorber und Justageeinheit ergänzt und in seiner Leistungsfähigkeit bis in den Multikilowattbereich gesteigert werden. Faseradapter, Kollimatoren, Neutralglasfiltereinsätze sowie zusätzliche Messobjektive sind bei Bedarf erhältlich.

Abb. 5.1: Komponenten am Beispiel des HP-LQM II

5.3 Messprinzip

Die Charakterisierung eines kollimierten Laserstrahls erfordert aufgrund der sehr langen Messwege von drei bis sechs Rayleighlängen einen großen Messaufwand. Deshalb erzeugt der LaserQualityMonitor LQM eine geräteinterne kompakte Kaustik durch die Fokussierung des eingestrahlten kollimierten Laserstrahls mit einer Fokussieroptik. Dabei wird der fokussierte Strahl über integrierte Absorber und OD-Filter abgeschwächt und mit einem Messobjektiv vergrößert auf dem CCD-Sensor abgebildet.

Durch das Verfahren der Prismen im Gerät und der wiederholten Messung der zweidimensionalen Leistungsdichteverteilung an verschiedenen Positionen, ermittelt die LaserDiagnosticsSoftware LDS Radius, Lage und Ausrichtung des Laserstrahls. Die elektronische Integrationszeitsteuerung des CCD-Sensors erweitert den Dynamikbereich des Systems. Dadurch ist ein Umbau der Filter während einer Messung im Allgemeinen nicht erforderlich.

Folgende Laserquellen können vermessen werden:

- Alle cw- und gepulsten Laserquellen im Wellenlängenbereich von 340-360 nm/515-545 nm/1030-1090 nm im mittleren Leistungsbereich von 1 mW bis in den Multikilowattbereich im M²-Bereich von 1 bis ca. 50.
- Der Strahldurchmesser an der Apertur des Messsystems kann bei einer Divergenz unter 10 mrad zwischen 1,5 mm und 15 mm variieren.

Abb. 5.2: Optischer Aufbau des LQM-Basisgerätes

Abb. 5.3: Messprinzip

5.4 Kurzübersicht Installation

1.	Sicherheitsvorkehrungen treffen	Kapitel 1 auf Seite 9
2.	Montage vorbereiten (nur bei einer Freistrahlmessung)	Kapitel 7 auf Seite 17
•	Vorbereitungen treffen	
•	Einbaulage festlegen	
•	Gerät manuell ausrichten	
3.	Wasserkühlung installieren (nur HP-LQM II und LQM 500 W wassergekühlte Version)	Kapitel 8 auf Seite 24
•	Anschlussdurchmesser	
•	Durchflussrate beachten	
4.	Elektrischer Anschluss	Kapitel 9 auf Seite 27
•	Stromversorgung anschließen	
•	Externen Sicherheitsschalter anschließen (Interlock)	
5.	Mit dem PC verbinden	Kapitel 9.4 auf Seite 31
•	Über Ethernet der LAN	
6.	LaserDiagnosticsSoftware LDS auf dem PC installieren	Kapitel 11 auf Seite 33
•	Die Software ist im Lieferumfang enthalten	
•	LaserQualityMonitor LQM mit der LaserDiagnosticsSoftware LDS verbinden	
7.	Montage abschließen (nur bei einer Freistrahlmessung)	Kapitel 13.3 auf Seite 94
•	Gerät mit der LaserDiagnosticsSoftware LDS gemäß Kapitel 13.3, "Laserstrahl mit der LaserDiagnosticsSoftware LDS ausrichten", auf Seite 94 ausrichten	
•	Gerät gemäß Kapitel 7 auf Seite 17 fest montieren	
8.	Messen	Kapitel 13.5 auf Seite 98
•	Sicherheitshinweise beachten	
•	Messobjektiv und Neutralgklasfilter wählen und einsetzen	
•	Ausrichtung des Gerätes mit der LaserDiagnosteSoftware LDS prüfen	
•	Beispielmessung durchführen	

6 Transport

WARNUNG

Verletzungen durch das Anheben oder Fallenlassen des Gerätes

Das Anheben und Positionieren schwerer Geräte kann z. B. zu überbelasteten Bandscheiben und chronischen Veränderungen der Lenden- oder Halswirbelsäule führen. Das Gerät kann herunterfallen.

▶ Verwenden Sie zum Anheben und Positionieren des Gerätes eine Hebevorrichtung.

ACHTUNG

Beschädigung/Zerstörung des Gerätes

Durch harte Stöße oder Fallenlassen können die optischen Bauteile beschädigt werden.

- ▶ Handhaben Sie das Messgerät bei Transport und Montage vorsichtig.
- ► Um Verunreinigungen zu vermeiden, verschließen Sie die Aperturen mit den mitgelieferten Deckeln oder optischem Klebeband.
- ▶ Transportieren Sie das Gerät nur im originalen PRIMES-Transportkoffer.

ACHTUNG

Beschädigung/Zerstörung des Gerätes durch austretendes oder gefrierendes Kühlwasser

Auslaufendes Kühlwasser kann das Gerät beschädigen. Der Transport des Gerätes bei Temperaturen nahe oder unter dem Gefrierpunkt und nicht vollständig entleertem Kühlkreis kann zu Geräteschäden führen.

- Entleeren Sie das Leitungssystem des Kühlkreises vollständig.
- Zum Entleeren des Kühlkreises kann der HP-LQM II/LQM 500 W mit gereinigter und trockener Druckluft gespült werden. Der optionale PowerLossMonitor PLM darf nicht mit Druckluft gespült werden.
- Auch wenn das Leitungssystem des Kühlkreises entleert wurde, verbleibt immer eine geringe Menge Restwasser im Gerät. Dieses kann austreten und ins Geräteinnere gelangen. Verschließen Sie die Anschlussstecker des Kühlkreislaufs mit den beiliegenden Verschlussstopfen.

7 Montage

7.1 Vorbereitung und Einbaulage

Prüfen Sie vor der Montage die Platzverhältnisse, insbesondere den benötigten Freiraum für die Anschlusskabel und -schläuche. Das Gerät muss stabil aufgestellt und mit Schrauben befestigt sein (siehe Kapitel 7.3 auf Seite 21).

Der LaserQualityMonitor LQM kann in einer beliebigen Position montiert und betrieben werden. Bei einer Freistrahlmessung muss der LaserQualityMonitor LQM zum Laserstrahl ausgerichtet werden. Die Reihenfolge zur Installation entnehmen Sie bitte dem Kapitel 5.4 auf Seite 16.

7.2 LaserQualityMonitor LQM manuell ausrichten

Bei einer Freistrahlmessung muss der LaserQualityMonitor LQM zum Laserstrahl ausgerichtet werden:

- 1. Richten Sie den LaserQualityMonitor LQM mit einem Pilotlaser und der Ausrichthilfe manuell aus.
- Der LaserQualityMonitor LQM ist dann richtig ausgerichtet, wenn der Pilotlaserstrahl mittig durch die Bohrungen der Ausrichthilfe verläuft.
- 2. Prüfen Sie die Ausrichtung gemäß Kapitel 13.3 auf Seite 94 mit dem Justiermode der LaserDiagnosticsSoftware LDS.

7.2.1 Ausrichthilfen

Je nach LaserQualityMonitor LQM-Version sind verschiedene Ausrichthilfen für verschiedene Aperturdurchmesser verfügbar.

Aperturdurchmesser in mm	LQM-Version	Bestell-Nr.
40	 1. Vorstufe 200 W luftgekühlt 500 W wassergekühlt 	850-006-005
45	2. Vorstufe (HP wassergekühlt)	850-006-006
54	Basisgerät	850-006-001

Tab. 7.1: Ausrichthilfen für verschiedene Aperturdurchmesser

Die Eintrittsapertur muss zentrisch und rechtwinklig zum Laserstrahl ausgerichtet werden. Zur Ausrichtung dienen Ausrichthilfen für die unterschiedlichen LQM-Versionen.

Abb. 7.1: Ausrichthilfen für die Ausrichtung der LQM-Versionen mit unterschiedlichen Aperturen

7.2.2 Manuelle Ausrichtung des Basisgerätes

Für die Ausrichtung am Basisgerät wird die Ausrichthilfe mit einer Montageplatte und zwei Rändelschrauben befestigt, die im Lieferumfang enthalten sind (siehe Abb. 7.2 auf Seite 19).

Abb. 7.2: Montierte Ausrichthilfe am Basisgerät

7.2.3 Manuelle Ausrichtung der 1. Vorstufe und Feinjustage

Für die Ausrichtung an der 1. Vorstufe wird die Ausrichthilfe mit einer Montageplatte und zwei Rändelschrauben befestigt, die im Lieferumfang enthalten sind (siehe Abb. 7.3 auf Seite 19).

Abb. 7.3: Montierte Ausrichthilfe an der 1. Vorstufe

Mit der 1. Vorstufe, kann der Einfallswinkel des Laserstrahls zur Feinjustage mit zwei integrierten Mikrometerschrauben um $\pm 3^{\circ}$ korrigiert werden (siehe Abb. 7.4 auf Seite 19).

Abb. 7.4: Mikrometerschrauben an der 1. Vorstufe zur Feinjustage

7.2.4 Manuelle Ausrichtung der 2. Vorstufe

Für die Ausrichtung an der 2. Vorstufe wird die Ausrichthilfe mit einer Montageplatte und zwei Rändelschrauben befestigt, die im Lieferumfang enthalten sind (siehe Abb. 7.5 auf Seite 20).

Abb. 7.5: Montierte Ausrichthilfe an der 2. Vorstufe

7.3 LaserQualityMonitor LQM montieren

GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Wird das Gerät aus der eingemessenen Position bewegt, kann im Messbetrieb vermehrt reflektierte Strahlung (Laserklasse 4) entstehen.

Befestigen Sie das Gerät so, dass es durch unbeabsichtigtes Anstoßen oder Zug an den Kabeln oder Schläuchen nicht bewegt werden kann.

7.3.1 LQM 20/200 ohne Bodenplatte montieren

Abb. 7.6: Befestigungsgewinde LQM 20/200 ohne Bodenplatte

An der Unterseite des Gerätes befinden sich sechs Befestigungsgewinde M6 für die Befestigung auf einer kundenseitigen Halterung. Wir empfehlen Schrauben der Festigkeitsklasse 8.8.

➡ 6 Gewindebohrungen M6

7.3.2 LQM 200/500 mit Bodenplatte montieren

Abb. 7.7: Befestigungsgewinde LQM 200/500 mit Bodenplatte

In der Bodenplatte befinden sich sechs Befestigungsgewinde M6 für die Befestigung auf einer kundenseitigen Halterung. Wir empfehlen Schrauben der Festigkeitsklasse 8.8.

➡ 6 Gewindebohrungen M6

7.3.3 HP-LQM II mit Bodenplatte montieren

Abb. 7.8: Befestigungsbohrungen und Gewindebohrungen zum Ausrichten HP-LQM II mit Bodenplatte

→ 2 Befestigungsbohrungen Ø 6,6 mm

4 Gewindebohrungen M8 für die Ausrichtung

8 Kühlkreis anschließen (nur HP-LQM II und 500 W-Version wassergekühlt)

🚹 GEFAHR

Brandgefahr; Beschädigung/Zerstörung des Gerätes durch Überhitzung

Bei fehlendem Wasseranschluss oder zu niedrigem Durchfluss wird das Gerät überhitzt und kann dadurch beschädigt werden oder in Brand geraten.

Betreiben Sie das Messgerät nur mit angeschlossener Wasserkühlung und ausreichender Durchflussmenge.

8.1 Wasserqualität

ACHTUNG

Beschädigung/Zerstörung des Gerätes durch unterschiedliche chemische Potentiale

Die wasserführenden Teile im Gerät bestehen aus Kupfer, Messing oder rostfreiem Stahl. Ein Anschluss an Leitungen aus Aluminium kann zur Korrosion des Aluminiums aufgrund der unterschiedlichen chemischen Potentiale führen.

Schließen Sie das Gerät nicht an ein Leitungsnetz aus Aluminium an.

- Das Gerät kann mit Leitungswasser als auch mit demineralisiertem Wasser betrieben werden.
- Das Gerät nicht an einem Kühlkreislauf betreiben der Additive wie z. B. Frostschutzmittel enthält.
- Das Gerät nicht an einem Kühlkreislauf betreiben in dem Komponenten aus Aluminium verbaut sind. Insbesondere beim Betrieb mit hohen Leistungen und Leistungsdichten kann es sonst zu einer Korrosion im Kühlkreislauf kommen. Langfristig wird dadurch die Leistungsfähigkeit des Kühlkreislaufs reduziert.
- Große Schmutzpartikel oder Teflonband können die internen Kühlkanäle verstopfen. Spülen Sie deshalb Ihr Leitungssystem gründlich vor dem Anschluss.

8.2 Wasserdruck

Normalerweise sind 2 bar Primärdruck am Eingang des Absorbers bei drucklosem Ablauf ausreichend um die notwendige Durchflussmenge sicherzustellen.

ACHTUNG

Beschädigung/Zerstörung des Gerätes durch Überdruck

> Der maximal zulässige Wasserdruck beträgt 4 bar.

8.3 Luftfeuchtigkeit

- Das Gerät darf nicht in kondensierender Atmosphäre betrieben werden. Die Luftfeuchte ist zu berücksichtigen, um Kondensate innerhalb und außerhalb des Gerätes zu vermeiden.
- Die Temperatur des Kühlwassers darf nicht unterhalb des Taupunktes liegen (siehe Tab. 8.1 auf Seite 25).

ACHTUNG

Beschädigung/Zerstörung des Gerätes durch Kondenswasser

Kondenswasser im Objektiv kann zur Beschädigung führen.

▶ Beachten Sie den Taupunkt in Tab. 8.1 auf Seite 25.

Kühlen Sie das Gerät nur während des Messbetriebs. Wir empfehlen, die Kühlung ca. 2 Minuten vor der Messung zu starten und ca. 1 Minute nach der Messung zu beenden.

Tab. 8.1: Taupunkt-Diagramm

Beispiel

Lufttemperatur:	22 °C
Relative Luftfeuchte:	60 %

Die Kühlwassertemperatur darf 14 °C nicht unterschreiten.

8.4 Wasseranschlüsse und Wasserdurchflussmenge

8.4.1 HP-LQM II (10 kW)

HP-LQM II (10 kW)					
Anschlussdurchmesser	Empfohlene Durchflußmenge	Mindestdurchflußmenge			
PE-Schläuche 12 mm	7 l/min – 8 l/min (1l/(min · kW)	4,5 l/min nicht unterschreiten			

8.4.2 LQM (500 W)

LQM II (500 W)				
Anschlussdurchmesser	Empfohlene Durchflußmenge			
PE-Schläuche 8 mm	1,5 l/min (1l/(min · kW)			

Abb. 8.1: Wasseranschlüsse am HP-LQM II

Abb. 8.2: Verschlussstopfen der Wasseranschlüsse entfernen

9 Elektrischer Anschluss

Der LaserQualityMonitor LQM benötigt für den Betrieb eine Versorgungsspannung von 24 V \pm 5 % (DC). Ein passendes Netzteil mit einem Adapter wird mitgeliefert. Bitte verwenden Sie ausschließlich die mitgelieferten Anschlussleitungen.

Bitte stellen Sie erst alle elektrischen Verbindungen her und schalten Sie das Gerät ein, bevor Sie die LaserDiagnosticsSoftware LDS starten.

Der LaserQualityMonitor LQM dient dabei für die Software auf dem Rechner als Dongle zur Freigabe bestimmter Softwarefunktionen.

9.1 Anschlüsse

i

Abb. 9.1: Anschlüsse

9.2 Pinbelegung

9.2.1 Spannungsversorgung

D-Sub-Buchse, 9-polig (Ansicht Steckseite)				
	Pin	Funktion		
	1	GND		
F 1	2	RS485 (+)		
	3	+24 V		
$O\left(\circ\circ\circ\circ\circ\right)O$	4	Trigger RS485 (+)		
	5	Nicht belegt		
	6	GND		
	7	RS485 (-)		
	8	+24 V		
	9	Trigger RS485 (-)		

Tab. 9.1: D-Sub-Buchse RS485

9.2.2 Eingang externer Trigger

Abb. 9.2: Anschlussbuchse BNC Eingang für einern externen Trigger im Anschlussfeld

9.2.3 Ausgang interner Trigger

Abb. 9.3: Anschlussbuchse BNC Ausgang für den internen Trigger im Anschlussfeld

9.3 Sicherheitseinrichtungen

9.3.1 Temperaturkontrolle

In der 1. und 2. Vorstufe sowie im Absorber und dem Basisgerät ist jeweils ein Temperaturschalter eingebaut. Wenn in einer dieser Komponenten die Temperatur 75 °C übersteigt, erkennt der LaserQualityMonitor LQM dies und eine Warnmeldung wird in der LaserDiagnosticsSoftware LDS ausgegeben.

ACHTUNG

Beschädigung/Zerstörung des Gerätes

Aufgrund der Temperaturkontrolle wird eine Übertemperatur des Gerätes in der LaserDiagnosticsSoftware LDS angezeigt, aber das Gerät ist nicht vor thermischen Schäden geschützt.

- Schalten Sie bei einer Übertemperaturmeldung in der LaserDiagnosticsSoftware LDS den Laser unverzüglich aus.
- Der LaserQualityMonitor LQM darf daher zu keiner Zeit unbeaufsichtigt Messungen durchführen.

9.3.2 Externer Sicherheitskreis (nur beim HP-LQM II mit 2. Vorstufe)

Im HP-LQM II mit 2. Vorstufe ist eine externe Sicherheitsschaltung (Laser Interlock) integriert, die mit dem Sicherheitskreis des Lasers verbunden werden muss und den Laser so im Fehlerfall ausschalten kann.

ACHTUNG

Beschädigung/Zerstörung des Gerätes

Ist der Sicherheitskreis nicht angeschlossen, kann das Gerät im Fehlerfall durch Überhitzung beschädigt werden.

Schließen Sie die Lasersteuerung so an die Anschlüsse 1 bis 4 an, dass bei einer Unterbrechung dieser Verbindung der Laser abgeschaltet wird.

Abb. 9.4: Sicherheitskreis-Gerätestecker an der 2. Vorstufe

Pin	Funktion
1	Interlock (potentialfrei). Mit Pin 3 verbunden wenn betriebsbereit.
2	Anschlussüberwachung
3	Interlock (potentialfrei). Mit Pin 1 verbunden wenn betriebsbereit.
4	Anschlussüberwachung

Tab. 9.2: Pinbelegung Sicherheitskreis

Die Lasersteuerung muss so an Pin 1 und Pin 3 angeschlossen sein, dass bei einer Unterbrechung dieser Verbindung der Laser abgeschaltet wird.

Um zu erkennen, ob der externe Sicherheitskreis überhaupt angeschlossen ist, müssen in der Buchse Pin 2 und Pin 4 gebrückt sein. Ist die Buchse nicht eingesteckt und der externe Sicherheitskreis somit nicht aktiv, wird eine Warnmeldung in der LaserDiagnosticsSoftware LDS ausgegeben. Eine passende 4-polige Kabelbuchse ist im Lieferumfang enthalten.

9.4 Anschluss an den PC und Stromversorgung anschließen

ACHTUNG

Beschädigung/Zerstörung des Gerätes

Beim Trennen der elektrischen Leitungen während des Betriebes (bei angelegter Spannungsversorgung) entstehen Spannungsspitzen, welche die Kommunikationsbausteine des Messgerätes zerstören können.

- Schalten Sie zuerst das Netzteil aus, bevor Sie die Leitungen trennen.
- 1. Verbinden Sie das Gerät über ein Crossover-Kabel mit dem PC oder über ein Patch-Kabel mit dem Netzwerk.
- 2. Schließen Sie das Netzteil über den Adapter an die 9-polige D-Sub-Buchse (RS485) des Gerätes an.

Abb. 9.5: Anschluss über Ethernet an einen PC oder ein lokales Netz

10 Status-LEDs

Das Gerät hat zwei Status-LEDs.

Bezeichnung	Farbe	Bedeutung
Power	Grün	Die Spannungsversorgung ist eingeschaltet
Measuring	Gelb	Eine Messung läuft

 Tab. 10.1:
 Beschreibung der Status-LEDs am LaserQualityMonitor LQM

Abb. 10.1: Status-LEDs am LaserQualityMonitor LQM

11 Installieren und konfigurieren der LaserDiagnosticsSoftware LDS

Für den Betrieb der Messgeräte muss auf dem PC die PRIMES-LaserDiagnosticsSoftware LDS installiert werden. Das Programm befinden sich auf dem mitgelieferten Datenträger. Die neueste Version erhalten Sie auf der PRIMES Webseite unter: https://www.primes.de/de/support/downloads/software.html.

11.1 Systemvoraussetzungen

Betriebssystem:	Windows® XP/Vista/7/10
Prozessor:	Intel [®] Pentium [®] 1 GHz (oder vergleichbarer Prozessor)
Benötigter Festplattenspeicher:	15 MB
Monitor:	19" Bildschirmdiagonale empfohlen, Auflösung min. 1024x768
LDS-Version:	2.98 oder höher

11.2 Software installieren

Die Software wird menügesteuert von dem mitgelieferten Datenträger installiert. Starten Sie die Installation durch Doppelklick auf die Datei "Setup LDS v.X.X.exe" (X = Platzhalter für die Versionsnummer) und folgen Sie den Anweisungen.

🔀 Setup - Primes Laser Diagnose Software
Available applications What do you want to install?
Please choose the applications/drivers to install, then dick Next.
< Back Next > Cancel

Abb. 11.1: Setup der PRIMES-LaserDiagnosticsSoftware LDS

Die Installationssoftware schreibt das Hauptprogramm "LaserDiagnosticsSoftware.exe" – falls nicht anders spezifiziert – in das Verzeichnis "Programme/PRIMES/LDS". Darüber hinaus wird auch die Einstellungsdatei "laserds.ini" in dieses Verzeichnis kopiert. In der Datei "laserds.ini" sind die Einstellparameter für die PRIMES-Messgeräte hinterlegt.

11.3 Ethernetverbindung einrichten

11.3.1 IP-Adresse eingeben

i

Der LaserQualityMonitor LQM hat eine feste IP-Adresse die auf dem Typenschild angegeben ist:

- Wird der LaserQualityMonitor LQM direkt mit einem PC verbunden, geben Sie diese feste IP-Adresse im Menü *Kommunikation > Freie Kommunikation* (siehe Kapitel 11.3.2 auf Seite 35) ein.
- Wird der LaserQualityMonitor LQM über ein Netzwerk angeschlossen, wird vom LaserQualityMonitor LQM für ca. eine Minute eine variable IP-Adresse im Netz abgerufen. Diese variable IP-Adresse können Sie mit der mitgelieferten Software "PrimesFindIp" auslesen und im Menü *Kommunikation > Freie Kommunikation* (siehe Kapitel 11.3.2 auf Seite 35) eingeben.
- Soll der LaserQualityMonitor LQM mit der festen IP-Adresse mit dem Netzwerk verbunden werden, dann schalten Sie zuerst den LaserQualityMonitor LQM ein und verbinden anschließend das Netzwerkkabel mit dem LaserQualityMonitor LQM. Geben Sie anschließend die feste IP-Adresse im Menü *Kommunikation > Freie Kommunikation* (siehe Kapitel 11.3.2 auf Seite 35) ein.

Die Standard-IP-Adresse des LaserQualityMonitor LQM ist:

IP-Adresse: 192.168.116.84 Subnetzmaske: 255.255.255.0

Der PC muss ebenfalls eine feste IP-Adresse im gleichen Subnet haben, z. B.:

IP-Adresse: 192.168.116.XXX Subnetzmaske: 255.255.255.0

Die ersten drei Blöcke der IP-Adresse müssen mit der IP des LaserQualityMonitor LQM übereinstimmen.

ypenschild LQM	Eigenschaften von Internetprotokoll (TCP/IP)	? X
Type LaserQualityMonitor LOM S/N 8285 Built 2016 MAC-Address 00 03 F4 07 6C E3 IP-Address DHCP enabled Static IP-Address 192.168.116.84 Www.primes.de	Figenschaften von Internetprotokoll (TCP/IP) Allgemein IP-Einstellungen können automatisch zugewiesen werden, wenn das Netzwerk diese Funktion unterstützt. Wenden Sie sich andernfalls an den Netzwerkadministrator, um die geeigneten IP-Einstellungen zu beziehen. IP-Adresse automatisch beziehen Folgende IP-Adresse verwenden: IP-Adresse: 192 ± 168 ± 116 ± 80 Subnetzmaske: 255 ± 255 ± 0 Standardgateway:	? ×
	DNS-Serveradresse automatisch beziehen Serveradressen verwenden:	
	Bevorzugter DNS-Server: Alternativer DNS-Server:	

Abb. 11.2: Ethernetverbindung einrichten im Dialogfenster Ethernet

11.3.2 Verbindung zum PC aufbauen (Menü *Kommunikation > Freie Kommunikation*)

- 1. Starten Sie die LaserDiagnosticsSoftware LDS (siehe Kapitel 12 auf Seite 38).
- 2. Öffnen Sie das Dialogfenster *Kommunikation > Freie Kommunikation*.
- 3. Wählen Sie im Feld "Mode" TCP (die Option "Zweite IP" darf nicht aktiviert sein).
- 4. Geben Sie im Feld "TCP" die IP-Adresse ein.
- 5. Klicken Sie auf die Schaltfläche Verbinden (im Busmonitor erscheint "Connected").
- 6. Klicken Sie auf die Schaltfläche PRIMES Geräte Suchen.
- 7. Klicken Sie auf die Schaltfläche **Speichern** (die Konfiguration wird gespeichert und muss beim Neustart der LaserDiagnosticsSoftware LDS nicht erneut eingegeben werden).

	
Von 64 An 161 sdelay 01000	Senden
Von 64 An 168 Init 110	Senden
Von 64 An 113 ql	Senden
Hex Code: Com Port:	Testen
TCP IP: 192.168.116.84 Port: 6001 Verbinden Schließer No. 00.00.00.00.00 Finde IP Lösche IF	n Speichern
Befehl	Senden

Abb. 11.3: Verbindung zum PC aufbauen im Dialogfenster Freie Kommunikation

11.3.3 Standard-IP-Adresse des Gerätes ändern (Menü Kommunikation > Freie Kommunikation)

Sollte die feste IP-Adresse des LaserQualityMonitor LQM mit einem anderen Gerät gleicher IP-Adresse im Netzwerk kollidieren, kann die feste IP-Adresse des LaserQualityMonitor LQM geändert werden.

ACHTUNG

Ausfall des Gerätes durch fehlerhafte Eingaben

Bei der Änderung der IP-Adresse kann es zum Beispiel durch Tippfehler zur Überschreibung anderer EE-Zellen kommen und den LQM damit unbrauchbar machen.

Die Änderung der IP-Adresse sollte nur von versierten Anwendern vorgenommen werden.

Sie können die voreingestellte IP-Adresse des Gerätes mit folgenden Befehlen im Menü *Kommunikation* > *Freie Kommunikation* ändern:

IP-Adresse (Beispieladresse)	192.	168.	116.	85
	Ŷ	Ŷ	Ŷ	Ŷ
Befehle	se0328≭xyz	se0329≭xyz	se0330 * xyz	se0331 ≭ xyz

Tab. 11.1: IP-Adresse ändern

Im Beispiel sind **xyz** hierbei Platzhalter für die IP-Adressbytes (Wertebereich 1-254), diese müssen immer dreistellig eingegeben werden

Zum Beispiel ist die Zahl 84 mit 084 einzugeben.

Das Symbol * steht der Eindeutigkeit wegen für ein Leerzeichen.

Beispiel: Sie möchten die IP-Adresse von 192.168.116.85 auf 192.168.116.86 ändern.

- 1. Starten Sie die LaserDiagnosticsSoftware LDS (siehe Kapitel 12 auf Seite 38).
- 2. Öffnen Sie das Dialogfenster *Kommunikation > Freie Kommunikation*.
- 3. Wählen Sie im Feld "Mode" TCP (die Option "Zweite IP" darf nicht aktiviert sein).
- 4. Geben Sie im Feld "TCP" die aktuelle *IP-Adresse* ein.
- 5. Klicken Sie auf die Schaltfläche Verbinden (im Busmonitor erscheint "Connected").
- 6. Aktivieren Sie das Kontrollkästchen **Bus-Protokoll schreiben** (das Protokoll kann beim Auftreten von Problemen sehr nützlich sein).
- 7. Geben Sie im Eingabefeld "Befehl" folgendes Kommando ein: se0331 × 086
- Klicken Sie auf die Schaltfläche Senden und warten Sie die Bestätigung im Busmonitor ab (siehe Abb. 11.4 auf Seite 37 "-> Adr:0331 Wert: 086")
- 9. Schalten Sie das Gerät aus und wieder ein. Nach dem Neustart ist die IP-Adresse aktualisiert.

Seriell TCP) USB-To-Seriell 🔽 :	Zweite IP 🔽	Parity Prime	es Geräte Suchen
Von 64 An 16	1 sdelay 01000		v	Senden
Von 64 An 16	8 Init 110			Senden
Hex Code:	م ام Com F	Port:		Testen
- TCP		, ,		
IP: 192 . 168 . 116 .	85 Port: 6001	Verbinden	Schließen	Speichern
MAC: 00 : 00 : 0	0 : 00 : 00 : 00	Finde IP	Lösche IP	IP Zuweisen
Befehl se03	31 086		Se	nden
IP: 192.168.116.8	2 Port: 6001		- ()	
Befehl			Sen	iden
Bus monitor				
Connecting to Devio CONNECTED to 192 Seedback o.k. Reading EEPROM Calculating structure Adr: 00053 Wert: 086	e ip 192.168.116.85 port 60 168.116.85:6001 No structure CRC	01 • E	estätigun	g
Messdaten anzeigen	Löschen Cop	y <u>Bchließer</u>	V Bus-Pr	otokoll schreiben

Abb. 11.4: Ändern der IP-Adresse im Dialogfenster Freie Kommunikation

12 Beschreibung der LaserDiagnosticsSoftware LDS

Die LaserDiagnosticsSoftware LDS ist die Steuerzentrale für alle PRIMES-Messgeräte, die Strahlverteilungen oder Fokusgeometrien vermessen und daraus die Strahlpropagationseigenschaften ermitteln. Die LaserDiagnosticsSoftware LDS steuert die Messungen und liefert die Messergebnisse grafisch aufbereitet zurück.

Darüber hinaus wird aus den Messdaten die Messung bewertet, um Ihnen Hinweise auf die Zuverlässigkeit des Messergebnisses zu geben.

Starten Sie die LaserDiagnosticsSoftware LDS erst, wenn sämtliche Geräte verkabelt und eingeschaltet sind.

Starten Sie das Programm durch einen Doppelklick auf das PRIMES-Symbol 😐 in der neuen Startmenügruppe oder die Desktopverknüpfung.

12.1 Grafische Benutzeroberfläche

Zunächst wird ein Startfenster geöffnet, in dem Sie wählen, ob Sie messen wollen oder lediglich eine bereits vorhandene Messung darstellen möchten (Werkseinstellung "Messen").

PRIMES LaserDiagnoseSoftware - Willkomme	n
Was möchten Sie tun??	
Messung durchführen (Messgerät mu	uss angeschlossen sein)
C Vorhandene Messergebnisse darstell	len (kein Messgerät notwendig)
Copyright (c) Primes GmbH 1996-2016	PRIMES
	OK Cancel

Abb. 12.1: Startfenster der LaserDiagnosticsSoftware LDS

Nachdem das angeschlossene Gerät erkannt worden ist, werden die grafische Benutzeroberfläche und einige wichtige Dialogfenster geöffnet.

Damit Sie die entsprechenden Informationen schnell zuordnen können, werden in den folgenden Kapiteln spezielle Textauszeichnungen für Menüpunkte, Menüpfade und Texte der Bedienoberfläche verwendet.

Textauszeichnung	Beschreibung
Text	Kennzeichnet Menü Punkte. Beispiel: Dialogenster Sensorparameter
Text1 > Text2	Kennzeichnet die Navigation zu bestimmten Menüpunkten. Die Reihenfolge der Menüs wird durch das Zeichen ">" dargestellt. Beispiel: <i>Darstellung > Kaustik</i>
Text	Kennzeichnet Menüpunkte, Schaltflächen, Optionen und Felder. Beispiel: Mit der Schaltfläche Start

Abb. 12.2: Textauszeichnungen für Menüpunkte, Menüpfade und Texte der Bedienoberfläche

Die grafische Benutzeroberfläche besteht im Wesentlichen aus einer Menü- und einer Werkzeugleiste, über die Sie verschiedene Dialog- oder Darstellungsfenster aufrufen können.

Werkzeugleiste Variable Parameter Paramete	OPRIMES-LaserDiagnoseSoftware Original States Software Original States Original States Software Original States Original States Software Original States Original States Software Original States Software Orig	LQH ellung Kommunikation Skript Hilfe
Kaustikeinstellungen Xaustikeinstellungen Parameter Stati: Ebene 0 • Anzahl: 0 • Mode 108 • Manuelle Einstellung 40 • Automatik 0 • • Strahlsuche • Dialogfenster	Werkzeugleiste	Unbenannt 0
Start: Ebene 0 Image: Start in the image: S		Kaustikeinstellungen
Image: Constraint of the second of the se	Dialogfenster	Start: Ebene 0 ▼ 120- Leist: opt Verst Anzahl: 10 ▼ 96- 94- Mode 74- 94- 94-
I (dusimule Finstregröße Strahlsuche 1		Manuelle Einstellung 00- O Automatik 48- Strahlsuche 24- Ebene 0 ▼ 12- Keine ▼
Einstellungen Details 0.0 20.0 Messung Stop Reset		Marinie Enstrugios 0 Strahlsuche 1 Symmetrisch 0.0 20.0 Messung Stop

Abb. 12.3: Die wichtigsten Elemente der Benutzeroberfläche

Sie können parallel verschiedene Mess- und Dialogfenster öffnen. Dabei bleiben einige grundsätzlich wichtige Fenster (für das Messen oder die Kommunikation) permanent im Vordergrund. Alle anderen Dialogfenster werden überblendet, sobald Sie ein neues Fenster öffnen.

Abb. 12.4: Die wichtigsten Dialogfenster

12.1.1 Die Menüleiste

In der Menüleiste öffnen Sie per Mausklick alle Haupt- und Untermenüs, die das Programm bietet.

Abb. 12.5: Die Menüleiste

12.1.2 Die Werkzeugleiste

Durch Anklicken der Symbole in der Werkzeugleiste sind die folgenden Programmmenüs zu öffnen.

Dateiv	rerwaltu ▼	ung		Darstel ▼	lungsar	t		Dateiauswahl	Ebenenauswahl V	
	Ď	₩ ₩				0		Messung\LQM_2287.foc	▼ Ebene 0 ▼	
1	2	3	4	5	6	7	8	9	10	11

Abb. 12.6: Symbole in der Werkzeugleiste

- 1 Neuen Datensatz anlegen
- 2 Existierenden Datensatz öffnen
- 3 Aktuellen Datensatz speichern
- 4 Isometriedarstellung des ausgewählten Datensatzes öffnen
- 5 Variable Schnitte-Darstellung öffnen
- 6 Übersicht (86 %) öffnen
- 7 Falschfarbendarstellung öffnen
- 8 Kaustikpräsentation 2D
- 9 Liste mit allen geöffneten Datensätzen
- 10 Anzeige der ausgewählten Messebene
- 11 Anzeige der am Bus verfügbaren Messgeräte über grafische Symbole

Alle Messergebnisse werden immer in das in der Werkzeugleiste ausgewählte Dokument geschrieben. Nur hier angewählte Dokumente können dargestellt werden. Nach dem Öffnen müssen Sie die Datensätze explizit anwählen.

12.1.3 Menü-Übersicht

Datei		
Neu	Öffnet eine neue Datei für die Messdaten	
Öffnen	Öffnet eine Messdatei mit den Erweiterungen ".foc" oder ".mdf"	
Schließen	Schließt die Datei, die in der Werkzeugleiste ausgewählt ist	
Alle Dateien schließen	Schließt alle geöffneten Dateien	
Speichern	Speichert die aktuelle Datei im ".foc"- oder "mdf."-Format	
Speichern unter	Öffnet das Menü zur Speicherung der Daten, die in der Werkzeugleiste ausgewählt sind. Nur Dateien mit den Erweiterungen ".foc" oder ".mdf" können zuverlässig wieder eingele- sen werden	
Export	Exportiert die aktuelle Datei im Protokoll-Format ".xls" und ".pkl"	
Messeinstellungen laden	Öffnet eine Datei mit Messeinstellungen mit der Erweiterung ".ptx"	
Messeinstellungen spei- chern	Öffnet das Menü zum Speichern der Einstellungen des letzten Programmlaufs. Nur Da- teien mit der Erweiterung ".ptx" können geöffnet werden	
Protokoll	Startet ein Protokoll der numerischen Ergebnisse. Sie können wahlweise in eine Datei oder eine Datenbank geschrieben werden	
Drucken	Öffnet das Standard-Druckmenü	
Vorschau Drucken	Zeigt den Inhalt des Druckauftrags	
Zuletzt geöffnete Datei	Zeigt die zuvor geöffnete Datei an	
Ende	Beendet das Programm	
Bearbeiten		
Kopieren	Kopiert das aktuelle Fenster in die Zwischenablage	
Ebene löschen	Löscht die Daten aus der in der Werkzeugleiste angewählten Ebene	
Alle Ebenen löschen	Löscht alle Daten aus der in der Werkzeugleiste angewählten Datei	
Benutzerebene wechseln	Durch Eingabe eines Passwortes wird eine andere Benutzerebene aktiviert	
Messung		
Messumgebung	Hier können verschiedene Systemparameter eingegeben werden, z.B.: - Referenzwert für die Laserleistung - Brennweite (für den LaserQualityMonitor LQM nicht relevant) - Wellenlänge - Bemerkungen - Gerät-Offset (Abstand LQM - Laserquelle)	
Sensorparameter	Folgenden Geräteparameter können hier z. B. eingestellt werden: - die räumliche Auflösung (32, 64, 128 oder 256 Pixel) - die mechanischen Bewegungsgrenzen in z-Richtung - Auswahl eines der am Bus angeschlossenen Messgeräte - die Deaktivierung der z-Achse	
LQM-Justage	Ausrichtung zum einfallenden Laserstrahl	
Einstellung Strahlsuche	Einstellungen der Parameter für die Strahlsuche	
CCD Geräteinfo	Liefert Informationen über Geräteparameter	
CCD Einstellungen	Spezielle Einstellungen können hier vorgenommen werden: - Triggermode - Triggerlevel - Integrationszeit - Wellenlänge	

Leistungsmessung	Für den LaserQualityMonitor LQM nicht relevant
Einzelmessung	Dieser Menüpunkt ermöglicht den Start von Einzelmessungen, des Monitorbetriebs und dem Videomode
Kaustik	Ermöglicht den Start einer Kaustikmessung. Sowohl automatische Messungen als auch Serienmessungen manuell eingestellter Parameter sind möglich. Die automatische Messung beginnt mit einer Strahlsuche und durchläuft dann selbständig den gesamten Messablauf. Lediglich der zu untersuchende z-Bereich sowie die Zahl der gewünschten Messebenen muss eingegeben werden.
Start Justiermode	Für den LaserQualityMonitor LQM nicht relevant
Optionen	Ermöglicht die Einstellung von Geräteparametern
Darstellung	
Falschfarben	Falschfarbendarstellung der räumlichen Leistungsdichteverteilung
Falschfarben (gefiltert)	Anwendung einer räumlichen Filterung (Spline-Funktion) auf die Falschfarbendarstellung der Leistungsdichteverteilung
Isometrie	3-dimensionale Darstellung der räumlichen Leistungsdichteverteilung
Isometrie 3D	Erlaubt 3D-Ansicht von Kaustik und Leistungsdichteverteilung sowie eine optionale Isophotendarstellung
Übersicht (86%)	Numerische Übersicht der Messergebnisse in den verschiedenen Ebenen basierend auf der 86 % Strahlradiusdefinition
Übersicht (2. Moment)	Numerische Übersicht der Messergebnisse in den verschiedenen Ebenen basierend auf der 2. Momenten Strahlradiusdefinition
Kaustik	Ergebnisse der Kaustikmessung und die Resultate des Kaustikfits - wie Beugungsmaßzahl M ² , Fokuslage und Fokusradius
Rohstrahl	Informationen zur Rückrechnung auf den Rohstrahl
Symmetrieprüfung	Analysewerkzeug zur Prüfung der Strahlsymetrie besonders für die Justage von Laserresonatoren. Keine Standardfunktion des Gerätes
Feste Schnitte	Darstellung der räumlichen Leistungsdichteverteilung mit festen Schnittlinien bei 6 unter- schiedlichen Leistungsniveaus
Variable Schnitte	Darstellung der räumlichen Leistungsdichteverteilung mit frei wählbaren Schnittlinien.
Graphische Übersicht	Ermöglicht eine Auswahl graphischer Darstellungen - unter anderem des Radius, der x - und y - Position über der z-Position oder der Zeit
Systemstatus	Für den LaserQualityMonitor LQM nicht relevant
Evaluierungsparameter	Laden gespeicherter Evaluierungsparameter
Farbtafeln	Verschiedene Farbtabellen sind verfügbar um z. B. Beugungsphänomene detailliert analysieren zu können
Werkzeugleiste	Zum Anzeigen oder Ausblenden der Werkzeugleiste
Position	Verfahren des Gerätes in eine definierte Position
Evaluation	Vergleich der Messwerte mit definierten Grenzwerten und Auswertung (optional)
Kommunikation	
Geräte suchen	Das System sucht den Bus nach den verschiedenen Geräteadressen ab. Das ist not- wendig, wenn die Gerätekonfiguration am PRIMES-Bus nach dem Starten der Software geändert wurde.
Freie Kommunikation	Darstellung der Kommunikation auf dem PRIMES-Bus.
Liste gesuchter Geräte	Listet die Geräteadressen der einzelnen PRIMES-Geräte auf.

Skript	
Editor	Öffnet den Skriptgenerator, ein Werkzeug, um komplexe Messabläufe automatisch zu steuern (mit einer von PRIMES entwickelten Skriptsprache).
Auflisten	Zeigt eine Liste der geöffneten Fenster an.
Python	Öffnet den Skriptgenerator, um komplexe Messabläufe automatisch zu steuern (Skriptsprache Python).
Hilfe	
Aktivierung	Ermöglicht die Freischaltung von Sonderfunktionen
Über die LaserDiagnosticsSoftware LDS	Liefert Informationen über die Softwareversion

Tab. 12.1: Menü Übersicht

12.2 Datei

Dieses Menü umfasst unter anderem die Verwaltung von Mess- und Einstellungsdaten.

12.2.1 Neu (Menü Datei > Neu)

Mit Neu erstellen Sie eine neue Datei.

12.2.2 Öffnen (Menü Datei > Öffnen)

Mit Öffnen öffnen Sie eine ausgewählte Datei.

12.2.3 Schließen/Alle Dateien Schließen (Menü Datei > Schließen/Alle Dateien Schließen)

Mit **Schließen** wird die aktuell geöffnete Datei geschlossen. Mit **Alle Dateien Schließen** werden sämtliche geöffente Dateien geschlossen.

12.2.4 Speichern (Menü Datei > Speichern)

Die aktuell geöffnete Datei wird gespeichert. Der Standard-Dateityp ist ein binäres Datenformat mit minimalem Speicherbedarf. Die Dateiendung für eine Messdatei diesen Typs ist '.foc'. Alternativ dazu ist es möglich, die Daten in ein ASCII-Format zu speichern mit der Erweiterung '.mdf'. Informationen zum Dateiformat '.mdf' finden Sie im Anhang (Kap. 20.5 auf Seite 116). Nur Dateien mit diesen Formaten können vom Programm geöffnet werden.

12.2.5 Speichern unter (Menü Datei > Speichern unter)

Sie müssen einen Dateinamen vergeben, den Speicherort und das Dateiformat wählen.

Speichern Sie Messdaten nur mit den Erweiterungen ".foc" oder ".mdf". Sie können Messdaten nur betrachten, wenn Sie die entsprechende Datei explizit in der Werkzeugleiste ausgewählt haben.

12.2.6 Export (Menü Datei > Export)

Schreibt die Pixelinformation der Leistungsdichteverteilung in eine Excel-Tabelle (*.xls). Alternativ können die numerischen Ergebnisse aus einer ".foc"-Datei in eine Tab-separierte Textdatei (*.pkl) gespeichert werden, die in Microsoft Excel importiert werden kann. Die pkl-Exportfunktion hat den Koordinatenursprung im Zentrum des Messbereichs (gelber Punkt).

Abb. 12.7: Koordinaten der pkl-Exportfunktion (nicht massstäblich dargestellt)

12.2.7 Messeinstellungen laden (Menü Datei > Messeinstellungen laden)

Bereits gespeicherte Einstellungen können Sie mit **Messeinstellungen laden** wieder zu aktuellen Einstellungen machen. Die standardmäßige Erweiterung für eine Einstellungsdatei des LaserQualityMonitor LQM ist '.ptx'.

12.2.8 Messeinstellungen speichern (Menü Datei > Messeinstellungen speichern)

Sie speichern die aktuellen Messeinstellungen (.ptx-Datei).

12.2.9 Protokoll (Menü Datei > Protokoll)

Sie können die berechneten Messresultate aus einer einzelnen Ebene direkt in eine Textdatei schreiben. Dabei werden gespeichert:

- Datum und Zeit der Messung
- Strahlage und Strahlradius (nach 86 %- und 2. Moment Definition)

Dazu aktivieren Sie das Kontrollkästchen **Schreiben**. Dann können Sie in das Feld **Dateiname** direkt den Namen eingeben oder mit der Schaltfläche **Auswählen** das Standardauswahlmenü nutzen.

F	Protokoll	
	Protokolldatei	
	Dateiname: C4TempiProto.txt Auswählen	
	ОК	

Abb. 12.8: Fenster *Protokoll*

12.2.10 Drucken (Menü Datei > Drucken)

Sie können direkt aus dem Programm heraus einen Drucker ansprechen. Das aktuelle Fenster kann mit dem Menüpunkt **Drucken** im Menü **Datei** gedruckt werden. Dabei sind auch Einstellungen von Formaten usw. mit dem Menüpunkt **Eigenschaften** möglich.

12.2.11 Vorschau Drucken (Menü Datei > Vorschau Drucken)

Zeigt in einer Vorschau wie der Druck auf Papier aussehen wird.

12.2.12 Zuletzt geöffnete Datei (Menü Datei > zuletzt geöffnete Datei)

Auswahl der zuletzt bearbeiteten Dateien.

12.2.13 Ende (Menü Datei > Ende)

Beendet das Programm.

12.3 Bearbeiten

12.3.1 Kopieren (Menü Bearbeiten > Kopieren)

Mit Hilfe der Kopierfunktion ist ein direkter Export von Grafiken in andere Programme möglich. Der Inhalt des aktuellen Fensters wird dabei in die Windows-Zwischenablage übertragen.

12.3.2 Ebene löschen (Menü Bearbeiten > Ebene löschen)

Der Inhalt der aktuell angezeigten Messebene des Messdatensatzes, der in der Werkzeugleiste ausgewählt ist, wird gelöscht.

12.3.3 Alle Ebenen löschen (Menü Bearbeiten > Alle Ebenen löschen)

Der Inhalt aller Messebenen des Messdatensatzes, der in der Werkzeugleiste ausgewählt ist, wird gelöscht.

12.3.4 Benutzerlevel ändern (Menü Bearbeiten > Benutzerlevel ändern)

Durch Eingabe eines Passwortes wird eine andere Benutzerebene aktiviert.

12.4 Messung

PRIMES

12.4.1 Messumgebung (Menü Messung > Messumgebung)

Eine Beschreibung der Einstellungen für den LaserQualityMonitor LQM finden Sie im Kapitel 13.4.2 auf Seite 97.

Messumgebung
Bemerkung:
Brennweite: 204.936 mm
Z-Achsen Offset: 0 mm
X-Achsen Offset: 0 mm
Y-Achsen Offset: 0 mm
Koordinatenrotation: 0 Grad
Wellenlänge: 1.064
Gerät-Offset: 0.000 m
Max. Leistung: 6000 W
Aktualisieren 💽 Messung
all. Ebenen aktualisieren 🔘 Dokument

Abb. 12.9: Dialogfenster *Messumgebung*

Im Dialogfenster *Messumgebung* können Daten wie der Lasertyp, Informationen zum Kollimator usw. gespeichert werden. Diese Daten können über *Darstellung* > *Übersicht* gelesen werden.

Bitte verwenden sie im Kommentarfeld "Bemerkung" nicht das Zeichen #. Dieses Zeichen wird in der Software als Trennzeichen verwendet. Wird es im Kommentarfeld "Bemerkung" eingesetzt, können Probleme beim Speichern und Wiederlesen von Messdaten auftreten. Einen Zeilenwechsel erzwingen Sie mit der Tastenkombination: **<Strg> + <Eingabe>**.

Die Eingabe der Leistung ist ein Bezugswert für die relative Leistungsstellung im Menüpunkt *Einzelmessung* oder *Kaustikmessung*. Weiterhin können Sie einen z-Achsen-Offset sowie Koordinatendrehwinkel eingeben. Die Wellenlänge bildet die Basis für die korrekte Bestimmung der Beugungsmaßzahl M². Wählbar sind:

- 1.064 µm für Nd:YAG-Laser
- 0.532 µm für Grüne Laser
- 0.355 µm für UV-Laser

Sie können die Wellenlänge auch numerisch eingeben.

Die Einträge können Sie auch nach einer Messung mit der Schaltfläche **Aktualisieren** noch verändern. Mit der Schaltfläche **all. Ebenen aktualisieren** werden die eingegebenen Werte eingefügt und abgeglichen, während die Schaltfläche Aktualisieren nur auf den Wert in der aktuellen Ebene verweist.

Sensorparameter Sperrbereich	Gerät:	
	UPM: Auflösung X: 64 Auflösung Y: 64 Detektor Name:	
Y1: 0.00 Z1: 0.00 Y2: 0.00 Z2: 14.00 Y3: 0.00 Z3: 180.41	Mehr Manuelle Z-Achse Gredrehte Messspitze Fradius Correction Feste Y-Position	

12.4.2 Sensorparameter (Menü Messung > Sensorparameter)

Abb. 12.10: Dialogfenster Sensorparameter

Sperrbereich

Für den LaserQualityMonitor LQM nicht relevant.

Gerät

Über diesen Eintrag wählen Sie das Gerät aus, das bedient werden soll. Je nach Anzahl der angeschlossenen Geräte werden zusätzlich Gerätenummern vergeben.

UPM

Für den LaserQualityMonitor LQM nicht relevant.

Auflösung

Hier geben geben Sie die Anzahl der Pixel im Messfenster von 32 x 32 bis 256 x 256 Pixel vor. In der Regel sind 64 x 64 Pixel ausreichend. Bitte beachten Sie, dass eine größere Anzahl von Pixeln zu einer längeren Messdauer führt.

Detektor

Für den LaserQualityMonitor LQM nicht relevant.

Manuelle Z-Achse

Für den LaserQualityMonitor LQM nicht relevant.

12.4.3 Einstellung Strahlsuche (Menü Messung > Einstellungen: Strahlsuche)

Hier werden die Parameter für die automatisierte Strahlsuche eingestellt. Die allgemeine Voreinstellung ist für viele Standardanwendungen hilfreich.

ſ	Einstellungen
	Strahlsuche
	Punkt X: 128
	Punkt Y: 128 -
	Trigger: 50
	Prozent: 35
	Messfenster 3 Faktor:
	ОК

Abb. 12.11: Dialogfenster *Einstellungen: Strahlsuche*

Die Strahlsuche-Parameter können wie folgt eingestellt werden:

Punkt X, Punkt Y

Auswahl der räumlichen Auflösung.

Trigger

Die Signalschwelle (Trigger) ist abhängig vom Nullniveau des Messsystems.

Prozent

Der Prozentwert gibt an, um wieviel das Signal das Nullniveau überschreiten muss, um als Strahl erkannt zu werden. Diese Größe wird durch das Signal/Rauschverhältnis des Detektors bestimmt.

Messfenster Faktor

Der Messfenster-Faktor bestimmt die Größe des Messfensters bei der Strahlsuche. Der Faktor gibt an, um wievielmal größer das Messfenster im Verhältnis zum Strahldurchmesser gewählt wird.

12.4.4 CCD Geräteinfo (Menü Messung > CCD Geräteinfo)

Im Menü *Messung > CCD Geräteinfo* sind die wichtigsten Gerätedaten dargestellt. Man kann dort sowohl die Vergrößerungsdaten des Messobjektivs ablesen als auch prüfen, welcher Strahlweg geschaltet ist. Werden statt der tatsächlichen Vergrößerung offensichtliche Default-Werte (1:1) angezeigt, dann prüfen Sie bitte die Montage des Messobjektivs.

Objektiv						
Objektiv ID:	98 🗌	Wellenlänge	Vergrößerung o.V. V	ergrößerung m.V.	Vergröß. m. Obj.	Brennweite
Lagehauptebene: 2	297.688 mm	1064 nm	1: 4.882	1: 0.000	1: 0.000	50.606 mm
Beschichtungstyp:	1		de la companya de			
Hersteller:	PRIMES -e					
Тур:	5x					
BeamPath			Config			
Wellenlänge	1064	nm	Baustein	Installi	ert A	ktiviert
Standardweg	0.000	mm	CCD	1		1
Verlängerungsweg	160.000	mm (CMOS			
			Filterrad	1		-1
Justaas Obiektin			Comm. Switch of	i 🖌 🎸		1
Mag. Objectiv	1.00	00	Kamera EEPROM	sk 🖌 🎸		✓
Brenoweite	0.000	mm	Objektiv EEPROM	ok 🖌		×
Distanz zum Sensor	54 208	mm	Strahlwegverlänger	ing		
Hersteller	PRIMES	1	Justage Objektiv			
Turn	5-1		Deckel geöffnet			
Typ	9.1		Endschalter ausgel	ist 🧹		1

Abb. 12.12: Fenster CCD Geräteinfo

12.4.5 CCD Einstellung (Menü Messung > CCD Einstellung)

Eine Beschreibung der Einstellungen für den LaserQualityMonitor LQM finden Sie im Kapitel 13.4.1 auf Seite 96.

CCD Einstellung	
CCD CCD CCD Cw / Quasi-cw-Messung	CCD Einstellung
CMOS Dauer-Trigger Trigger mit Delag folgender Pu Trigger für einzelnen Puls Trigger mit SkH und Zeitenkon Trigger mit Delag für einzelnen Trigger mit SkH, Einzel-Pixel	Delay: 12 μs Istinge Integrationsdauer: 11998 μs CCD-Betriebsmodi ○ Untergrund ○ Rohdaten Pause ● Messdaten ✓
Filterrad	enlänge Trigger Level
Veller	nlänge: 1.064 - Triggerlevel: - 348
Filter referenced: Vergré Selected Filter:	ößerung: 4.886 Transfer Signal: □o Transfer 💌
Filter Factor:	Test Stop
	Aktualisieren

Abb. 12.13: Dialogfenster CCD Einstellung

Im Dialogfenster *CCD Einstellung* werden die Wellenlänge, die Abschwächung und der Betriebsmodus festgelegt.

Triggermodi

Je nach Betriebsmode des zu vermessenden Lasers muss hier die passende Einstellung vorgenommen werden. Hierbei ist zu beachten, dass gepulste Laser mit einer Pulsfrequenz größer 500 Hz im Modus cw vermessen werden können. Steht der Betriebsmode jedoch auf gepulst und es handelt sich um ein cw Lasersystem, wird das Messgerät immer mit einer Fehlermeldung "Error Black Pixel Measurement" oder "Time out during Measurement" auf eine Messanforderung reagieren.

Delay

Diese Funktion kann nur bei dem Triggermodus "getriggerter Betrieb" benutzt werden. Eingestellt wird an dieser Stelle die Zeit, die das Messsystem zwischen dem Erkennen eines Triggerpulses und dem Start der Messung warten soll. Zusammen mit der Funktion "Integrationsdauer", können definierte "Fenster" aus Pulszyklen (z. B. genau 1 Puls, oder Teile eines ms-Pulses) vermessen werden. Der minimale Delay beträgt 12 µs.

CCD-Betriebsmodi

Hier können drei verschiedene Modi eingestellt werden. Ist die Einstellung Rohdaten aktiviert, liefert das Messsystem bei Messanforderung die unkompensierten Daten des CCD zurück. Diese können gerade bei NIR-Laserstrahlung stark mit Messfehlern wie zum Beispiel dem Ausleserauschen "Smear" behaftet sein. Auch die aus diesen Daten generierten numerischen Strahldaten sind davon betroffen.

Ist als Betriebsmode Untergrund ausgewählt, werden beim Messen nur die Korrekturdaten übermittelt. Die Defaulteinstellung sollte hier aber immer der Mode Messdaten sein. Nur wenn dieser Mode eingestellt ist, kann das Messsystem belastbare Messwerte liefern.

Integrationsdauer

Diese Funktion legt eine definierte Integrationsdauer fest. Hierzu muss zuerst der Optimizer deaktiviert werden, da sonst die Integrationsdauer vom Messgerät selbst optimiert und somit verändert wird. Auch diese Funktion findet hauptsächlich bei der Vermessung von gepulsten Lasersystemen Anwendung.

Filterrad

Für den LaserQualityMonitor LQM nicht relevant.

Wellenlänge

Aufgrund der wellenlängenabhängigen Gesamtvergrößerung der kamerabasierten Messsysteme muss vor jeder Messung geprüft werden, dass hier die richtige Auswahl getroffen wurde. Bei den hier angezeigten Wellenlängen handelt es um die Kalibrierpunkte des Messobjektivs. Aufgrund der achromatischen Eigenschaften der Messobjektive kann beispielsweise mit dem Kalibrierpunkt bei 1064 nm in einem Wellenlängenbereich zwischen 1030 und 1100 nm gemessen werden, ohne dass signifikante Messfehler entstehen.

Trigger

Das Triggermenü ist nur für das Vermessen von gepulsten Lasersystemen von Bedeutung. Standardmäßig ist der Triggerdiode ein fester Wert (2001) vorgegeben. Dieser Wert beschreibt den Schwellwert, bei dem ein Triggersignal ausgegeben wird. Stellt man den Trigger auf automatisch um, wird der Triggerlevel zunächst auf den maximalen Wert gesetzt. Die Schaltfläche **Test** wird in **Optimize** umbenannt. In der Optimize-Routine (Laser muss eingeschaltet sein) wird die Triggerschwelle stufenweise herabgesetzt, bis der LaserQualityMonitor LQM einige Triggersignale bekommt (unterer Triggerlevel). Anschließend wird der Triggerlevel so lange angehoben, bis der LaserQualityMonitor LQM kein Triggersignal mehr bekommt (oberer Triggerlevel). Der endgültige Triggerlevel bildet sich aus dem arithmetischen Mittel der beiden Grenzwerte. Unter dem Menüpunkt **Trigger Channel** kann der externe Triggereingang aktiviert werden. Transfer Signal betrifft den Transferausgang des LaserQualityMonitor LQM. Hier kann festgelegt werden, bei welchem Zustand des CCD-Sensors ein Triggersignal (z. B. für das Einschalten des Lasers) gegeben werden soll.

Abb. 12.14: Triggeranschlüsse

Allgemeine Ablaufsteuerung

PRIMES

- Leeren der CCD-Register
- Wartepunkt in Zeile a (Zeile in dem der Phototransfer stattfindet) ansteuern; falls während Sub-Puls Trigger kommt, Zeile a wiederholen (-> KZW = KeinZeilenWechsel)
- Evtl. auf Trigger warten, dabei Zeile a wiederholen (KZW)
- Evtl. Delay abwarten, dabei Zeile a wiederholen (KZW)
- In Zeile a über SUB-Puls (-> Löschen der Ladung in den Photodioden) Wartepunkt ansteuern
- Integration kein Takten (Schieben der Ladungen durch die Register) des CCD
- Takten beginnt wieder, wenige AD-Zyklen später: Phototransfer
- Auslesen der CCD-Register; bei passenden Adressen (= gewünschtes Pixel) wird Messwert an AD-Wandler weitergeleitet.

Die verschiedenen Signale, die auf den Transferausgang gelegt werden können, markieren bestimmte Zeitpunkte während der Ablaufsteuerung:

Transfer-Signale	Bedeutung
Do Transfer	Ist high, wenn das CCD in Zeile a am Wartepunkt steht (heißt so, weil in dieser Zeile auch der Phototransfer stattfindet – wenn er nicht gerade durch KZW unterdrückt wird).
Do Transfer & XEnde	Ein kurzer high-Puls, wenn wir das Ende der Zeile a erreichen.
Sub	lst high, solange ein Sub-Puls läuft.
Start Done	Wird high, wenn das CCD bereit ist zur Integration (bzw. zum Warten auf Trigger), also in Zeile a am Wartepunkt steht. Wird erst wieder low, wenn das CCD ausgelesen ist. Die positive Flanke könnte man nutzen, um den Laser zu zünden.
Wait For Trigger	Wird high, wenn das CCD in Zeile a am Wartepunkt steht und auf Triggersignal wartet. Wird low, sobald der Trigger eintrifft und der Delay beginnt. Bei ungetriggertem Betrieb entsteht nur ein kurzer high-Puls. Könnte man, neben der Trigger out-Buchse, zur Über- prüfung der Triggerung nutzen.
Integration Done	Wird high, sobald die Integration abgeschlossen ist. Wird wieder low, wenn das CCD ausgelesen ist.
Photo Cycle	Wird high, wenn das CCD bereit ist zur Integration. Wird low, sobald die Integration abgeschlossen ist. Bei ungetriggertem Betrieb gibt die high-Phase also genau die Integrationszeit wieder.

Tab. 12.2: Signale die auf den Transferausgang gelegt werden können

12.4.6 LQM-Justage (Menü Messung > LQM-Justage)

Eine Beschreibung der Einstellungen für den LaserQualityMonitor LQM finden Sie im Kapitel 13.3 auf Seite 94.

		Delta Z (mm): 10 Z1 (mm): 144
	0 0.46 mm	Z2 (mm): 154 Z3 (mm): 164 Grenzwert: 0.01
	0.46 mm	
x1=0.0 y1=0.0	0, x3=0.00, slphaX=0.0000 0, y3=0.00, slphaY=0.0000	Justage starten

Abb. 12.15: Dialogfenster LQM-Justage

12.4.7 Leistungsmessung (Menü Messung > Leistungsmessung)

Für den LaserQualityMonitor LQM nicht relevant.

12.4.8 Einzelmessung (Menü Messung > Einzelmessung)

Abb. 12.16: Dialogfenster Messeinstellungen

1	Einzelmessung Monitor Videomode	Einzelmessung in der ausgewählten Ebene Wiederholende Messungen in der ausgewählten Ebene Wiederholte Ausgabe der Rohdaten in der ausgewählten Ebene
2	Start	Startet eine Messung in der aktuell ausgewählten Ebene
3	Stop	Beendet die Messung in der aktuell ausgewählten Ebene
4	Reset	Das Messgerät wird zurückgesetzt (reset)
5	Stop Motor	Für den LaserQualityMonitor LQM nicht relevant
6	Ebene	Auswahl der Messebene (0-49) explizit oder über die Schaltflächen (+/-)
7	Eingabefeld z	Numerische Eingabe der z-Position
8	Kopieren	Kopiert alle Einstellungen (Fenstergröße und -position; x, y, z; usw.) von vorheriger Ebene in die aktuelle Ebene (z. B. 1>>2)
9	Strahlsuche	Startet eine automatische Strahlsuche in der aktuellen Messebene
10	Scan	Startet eine automatische Strahlsuche mit dem LaserQualityMonitor LQM. Der Al- gorithmus arbeitet bei fester z-Position und sucht nur im Bereich des eingestellten Messfensters
11	opt. Verst.	Schieberegler zum Einstellen der optischen Verstärkung (Integrationszeit des CCD)
12	Leist.	Schieberegler zum Einstellen der Laserleistung, um sie in der Software zu speichern
13	Eingabefeld Leist.	Numerische Eingabe der Laserleistung, um sie in der Software zu speichern
14	Eingabefeld Verst.	Numerische Eingabe der elektrischen Verstärkung
15	Mittelung	Für den LaserQualityMonitor LQM nicht relevant
16	Mittelung	Für den LaserQualityMonitor LQM nicht relevant
17	LED-Symbol und Balkenanzeige	Anzeige für den Grad der Signalsättigung (LED grün ≙ iO, rot ≙ niO)
18	Falschfarben	Aktiviert die Option Falschfarbendarstellung
19	Zoom	Optische Vergrößerung des Messfensters
20	Symmetrisch	Diese Option erzwingt die Verwendung quadratischer Messfenster, deren Größe allein über x einstellbar ist
21	X/Y	Einstellen der Messfenstergröße für nicht quadratische Fenster
22	Anzeigefeld	Messfenster zeigt das aktuelle Messergebnis
23	Z	Schieberegler zum Einstellen der z-Position

Tab. 12.3: Erklärung der Eingabe- und Einstellelemente

Mit dem Dialogfenster **Messeinstellungen** können entweder Einzelmessungen oder wiederholte Messungen durchgeführt werden. Die Messfensterposition kann manuell oder automatisch eingestellt werden.

Steuerung Messmodi (Einzelmessung, Monitor und VideoMode)

Insgesamt können hier drei verschiedene Messmodi ausgewählt werden. In den Messmodi *Einzelmessung* und *Monitor* werden alle nötigen Kompensationen (Smear, Diffusion) und Belichtungszeitanpassung bei jeder Messung neu durchgeführt. In diesen Modi werden gültige Messdaten erzeugt.

Der Messmodus *VideoMode* funktioniert nur bei einer Ethernet-Verbindung und erzeugt keine validen Messdaten. Anders als in den Messmodi *Einzelmessung* und *Monitor* werden im Messmodus VideoMode nur Rohdaten übermittelt. Falls der CCD-Sensor bei einer Messung übersteuert (ersichtlich an der Farbe rot im Anzeigefeld zur Signalsättigung und/oder einem A/D-Wandlerwert von 4095 in der Darstellung *Freie Schnitte*), sollten Sie die Verstärkung mit dem Schieberegler *opt. Verst.* (optische Verstärkung) reduzieren und die Messung wiederholen.

Aufgrund der "hohen" Messfrequenz von ca. 5 Hz kann diese Betriebsart insbesondere beim Ausrichten des Gerätes eingesetzt werden. Die numerischen Ergebnisse sollten nicht absolut, sondern immer relativ zueinander bewertet werden.

Leistung (Leist.)

Der Schieberegler stellt die tatsächliche Laserleistung ein, sodass der Softwarealgorithmus die räumliche Leistungsdichte berechnen kann. Es kann auf jede Leistung bis zum Maximum eingestellt werden. Die maximale Leistung wird unter im Menü *Messung > Umgebung* eingegeben. Die Berechnung der Leistungsdichten erfolgt bezogen auf die hier eingestellten Leistungswerte. In einer Messdatei können bis zu 50 Einzelmessungen aufgenommen werden. Die Ergebnisse können mit den verschiedenen Präsentationsfunktionen der LaserDiagnosticsSoftware LDS einfach verglichen und analysiert werden.

Optische Verstärkung (opt. Verst.)

Diese Funktion aktiviert die automatische Anpassung der Belichtungszeit des CCD bei jeder Messung. Nur bei aktivierter Funktion kann das Signal/Rausch-Verhältnis über eine Kaustikmessung konstant hoch gehalten werden.

Für spezielle Messanwendungen kann es allerdings auch durchaus sinnvoll sein, diese Funktion zu deaktivieren und die Belichtungszeit fest auf einen Wert zwischen 12 µs und 200 ms einzustellen. Gegebenenfalls muss auch die Abschwächung durch einen anderen Neutralglasfilter erhöht werden.

Kopieren

Mit der Schaltfläche *Kopieren* können Sie die Messeinstellungen der Fenstergröße und -position, Leistung und Verstärkung aus der jeweils vorhergehenden Messebene übernehmen.

Strahlsuche

Mit der Schaltfläche *Strahlsuche* startet eine automatische Strahlsuche. Das System sucht dabei nur im Gebiet des aktuell eingestellten Fensters auf der eingestellten z-Position.

Wird die Strahlsuche erfolgreich abgeschlossen, so wird ein Messfenster in geeigneter Größe und Position im Anzeigefeld eingeblendet. Mit der Schaltfläche *Start* kann dann der Strahl aufgenommen werden. Die Größe des Messfensters hängt von der Vergrößerung des Messobjektivs ab. Einflussgrößen sind hierbei das Messobjektiv und die Wellenlänge.

Scan

Bei Geräten wie zum Beispiel dem LaserQualityMonitor LQM ist das Messfenster sehr viel kleiner als der mit der x- und y- Achse gewährleistete Messbereich (2 mm x 2 mm). Deshalb wurde die Strahlsuche mit dem Befehl *Scan* ergänzt. Wird ein Scan gestartet, tastet der LaserQualityMonitor LQM automatisch den Messbereich ab. Ist ein Punkt maximaler Intensität ermittelbar, zoomt der LaserQualityMonitor LQM automatisch auf dieses Gebiet und passt die Messfenstergröße an.

Größe des Messfensters

Bei der manuellen Strahlsuche können Sie die Lage und die Größe des Messfensters im Dropdown-Menü innerhalb der mechanischen Grenzen selbst festlegen. Die Lage des Messfensters können Sie durch Anklicken und Verschieben des Rahmens mit der Maus verändern.

z-Schieberegler

Die Lage des Fensters in z-Richtung (Höhe) kann durch den z-Schieberegler oder über eine numerische Eingabe festgelegt werden.

Symmetrisch

Ist diese Funktion aktiviert, werden nur quadratische Messfenster zugelassen. Soll ein elliptischer oder auch ein rechteckiger Laserstrahl vermessen werden, sollte zur optimalen Anpassung der Messfenster diese Funktion deaktiviert werden.

Falschfarbendarstellung

Die Falschfarbendarstellung wird durch Anklicken der entsprechenden Schaltfläche aktiviert. Eine Messung wird mit der Schaltfläche *Start* gestartet. Die Auswahl *Monitor* und das Drücken der Schaltfläche *Start* startet eine fortlaufend wiederholende Messung mit aktuellen Einstellungen. Die Wiederholrate ist abhängig von der räumlichen Auflösung und der Art der Kommunikation zwischen dem PC und dem LaserQualityMonitor LQM.

Zoom-Funktion

Die Zoom-Funktion ermöglicht eine Detailvergrößerung des Messbereichs.

12.4.9 Kaustik (Menü Messung > Kaustik)

Die Kaustikmessung ist eine Serienmessung, bei der die z-Position variiert wird. Dabei wird jeder z-Position eine eigene Messebene mit den entsprechenden Messergebnissen zugeordnet. Da sich in jeder z-Position Strahlradius und Leistungsdichte verändern, können von Ebene zu Ebene die Lage und Größe des Fensters sowie die Signalverstärkung variieren. Die Parameter werden dabei automatisch angepasst und sind zusätzlich für jede Messebene getrennt einstellbar.

Parameter (Startnummer der Ebene)

Unter Start kann die Startnummer der Ebene angegeben werden, bei der mit dem Messen begonnen werden soll. Standardmäßig liegt die Startnummer auf Null und sollte nur verändert werden, wenn man in ein bestehendes Dokument messen und dabei die vorhandenen Messdaten nicht überschreiben möchte. Hat man beispielsweise eine Kaustik mit 21 Ebenen gemessen und möchte den Messbereich zu kleineren Z-Werten hin vergrößern, kann man die Startebene auf 21 setzten und den Messbereich entsprechend verändern. Die neuen Messwerte werden dann ab Ebene 21 in das bestehende Dokument geschrieben.

In dem Auswahlfeld Anzahl wird die Anzahl der im vorgegebenen z-Bereich zu messenden Ebenen festgelegt. Hier sollte Folgendes berücksichtigt werden:

- Da die LaserDiagnosticsSoftware LDS die Messebenenabstände immer äquidistant (gleiche Abstände aufweisend) setzt und der Messbereich so gut wie immer symmetrisch um den Fokus liegt, sollte eine ungerade Anzahl von Messebenen ausgewählt werden. So ist immer gewährleistet, dass die Fokusebene gemessen wird.
- Die Strahlvermessungsnorm DIN 11146 schreibt vor, dass mindestens 10 Messebenen gemessen werden sollen. Weiterhin sollen 5 Messungen innerhalb einer Rayleighlänge gemessen werden und die anderen 5 außerhalb von 2 Rayleighlängen. Um allen Anforderungen zu entsprechen, müssen bei äquidistanter Verteilung mindestens 17 Messebenen in einem Bereich von ± 3 Rayleighlängen gemessen werden.

Mode (Automatik und Manuelle Einstellung)

Für die Kaustikmessung gibt es zwei verschiedene Messmodi. Im "Automatik"-Modus bestimmen das Messsystem und die LDS für jede Messebene die ideale Messfensterposition (x- und y-Richtung) und die für den Füllfaktor optimale Messfenstergröße. Weiterhin wird anhand der Vorgaben (Messebenen Anzahl, Messgrenzen z-Richtung) die Ebenenlage in z-Richtung errechnet.

Gerade bei der Anpassung der Messfenstergröße und der Messfensterposition in x- und y-Richtung kann es durch die Anzahl der Iterationen (max. drei pro Ebene) zu einer verlängerten Messdauer kommen.

Für wiederkehrende Messaufgaben und für Wiederholungsmessungen gibt es deshalb die Möglichkeit den Messmodus auf "Manuelle Einstellung" zu ändern. Hier übernimmt das Messsystem die Messfensterpositionen und Messfenstergrößen aus der vorangegangen Messung oder aus einer .ptx-Datei. Dies reduziert die Messdauer deutlich, setzt allerdings voraus, dass der Laserstrahl sich nur minimal in der Lage und seinen Parametern geändert hat.

Strahlsuche

In diesem Auswahlfeld wird die Ebene vorgegeben, in der die Kaustikmessung begonnen werden soll. Ist im Dialogfenster Optionen die Funktion BeamFind aktiviert, ist das auch die Ebene bei der diese Funktion ausgeführt wird. Bei deaktivierter BeamFind-Funktion muss eben diese Ebene manuell vorgemessen werden, um sicherzustellen, dass der Laserstrahl gefunden wird.

Unter dem Menüpunkt *Einstellungen* ist es möglich, das Fenster anzupassen. Die Einstellungen für die räumliche Auflösung der Strahlsuche, den Schwellenwert und die minimale Signalstärke können unter dem Menüpunkt *Details* eingegeben werden.

Die Strahlsuche kann im Menü *Messung > Optionen (nur für advanced User)* durch das Deaktivieren des Kontrollkästchen *BeamFind aktivieren* ausgeschaltet werden.

Parameter	- Z-Position	Globale Parameter	
Start: Ebene 0 👻	35.0	Leist. opt.Verst	
0 parable	31.5-		
	28.0-		
	24.5-		
Mode	21.0-		
Manuelle Einstellung	17.5-	Optim.	
Automatik	14.0-	100.0 -51.9	
Strahlsuche	10.5	Mitteluna:	
Etras 0	7.0-	Keine -	
Ebene U 💌	3.5-	I venie	
Maximale Fenstergröße	0.0 - Strahlsuche	1 -	
Symmetrisch			

Automatische Kaustikmessung (Menü Messung > Kaustik > Automatik)

Abb. 12.17: Dialogfenster Kaustikeinstellungen

Bei der automatischen Kaustikmessung werden nur noch minimale und maximale z-Position sowie die Zahl der gewünschten Messebenen festgelegt. Der Messzyklus beginnt mit einer automatischen Strahlsuche in der ausgewählten Startebene. Die Strahlsuche erfolgt nur im Bereich des in der Startebene eingestellten Fensters.

Sie können jedoch auch weiterhin die Einstellungen manuell vornehmen. Nachdem die manuelle Einstellung der Messebenen - wie im folgenden Kapitel beschrieben - durchgeführt wurde, können Sie die Kaustikmessung durch Anklicken der Schaltfläche **Manuell** automatisch wiederholen.

Sie können die eingestellten Messparameter wie Fenstergrößen, Fensterpositionen usw. in einer Datei speichern und bei Bedarf wieder laden (*Datei > Messeinstellungen speichern/laden*).

Zum Starten eines Messzyklus klicken Sie auf die Schaltfläche **Messung**. Es werden dann nacheinander alle Ebenen gemessen.

Manuelle Kaustikmessung als Zeitreihe (Menü Messung > Kaustik > Manuelle Einstellung)

Die manuelle Kaustikmessung besteht aus einer Abfolge von Einzelmessungen an verschiedenen z-Positionen, wobei die Ergebnisse in jeweils einer eigenen Ebene gespeichert werden.

Für die manuelle Kaustikmessung sind die folgenden Schritte notwendig:

- 1. Wählen Sie den Menüpunkt *Datei > Neu*.
- 2. Wählen Sie den Menüpunkt *Messung > Einzelmessung*.
- 3. Wählen Sie die erste Ebene aus.
- 4. Stellen Sie die z-Position ein.
- 5. Stellen Sie die Messfenstergröße und -position ein.
- 6. Klicken Sie auf die Schaltfläche Start.
- 7. Wählen Sie die nächste Ebene aus, klicken Sie auf *Kopieren* und fahren Sie fort mit Punkt 4.

Wiederholen Sie die Schritte 3. bis 7. ca. 10 bis 15 mal.

Im Menüpunkt *Messung > Kaustik* wählen Sie die Option *Manuelle Einstellung* und klicken auf die Schaltfläche *Messung*. Danach werden die verschiedenen Ebenen mit den eingestellten Parametern gemessen.

Kaustikeinstellungen			
Parameter Start: Ebene 0 • Anzahl: 10 • Mode Mode Manuelle Einstellung Automatik Strahlsuche Ebene 0 • Manuelle Fenstergröße Symmetrisch Einstellungen Details	Z-Position 35.0 31.5 28.0 24.5 21.0 17.5 14.0 10.5 7.0 3.5 0.0 Strahlsuche 0.0 20.0 Messun	Globale Parameter Leist. opt.Verst V Optim. 100.0 -51.9 Mittelung: Keine V 1 V	

Abb. 12.18: Dialogfenster Kaustikeinstellungen

Die Messparameter können Sie im Menüpunkt **Datei > Messeinstellungen speichern** sichern und bei Bedarf wieder laden.

12.4.10 Start Justiermode (Menü Messung > Start Justiermode)

Für den LaserQualityMonitor LQM nicht relevant.

12.4.11 Optionen (nur für advanced User (Menü Messung > Optionen)

Messeinstellung	Auswertungseinstellung
Aktiviere "Messung beendet" Nachricht	Nullwert-Korrektur f ür positive Volumen
FFTX FFTY FFTRadius 3	Anzeige Durchmesser
📃 Vollautomatische Kaustik (nur für MSM)	Mehr Information in der Protokolldatei
BeamFind aktivieren	- Yideo Mode
Integrationszeit-Koeffizient CCD: 0.000	Anzahl der Messungen: 999
Strahlsuche-Iteration:	Anzani der Messungen.
	Ansicht
Max. Kaustic iteration: 3	Schriftgrad: 10 👻 🔽 Fenster öffnen
📃 Zwischenfenster aktivieren	
Füllfaktor	Verstärkung optimieren
Max 0.70 Min 0.50 Soll 0.60	Schwelle Max: 3700 Min: 1200
Fiillfaktor-Überpriifung aktivieren	Max. Iteration: 7 Sobritt: 2 💌
pari 10.05 par2 10.20	Linescan
Bearbeitungseinstellung	OffsetX Korrektur: 0.000
Kompensation f ür Puro-Detektor aktivieren	
Sync. aktivieren j Filter aktivieren	
Defekte Pixel ignorieren (CMOS)	Z-Position
Defekte Pixel ignorieren (CCD)	Offset: 20.63 Offset (bottom): 5.90

Abb. 12.19: Dialogfenster Option

BeamFind aktivieren

Die Funktion BeamFind wird bei Kaustikmessungen benötigt. Es handelt sich um einen Algorithmus, der über eine einstellbare Triggerschwelle das Messsignal von den Messartefakten (z. B. Rauschen) trennt und die Größe des Messfensters auf dieses Signal abstimmt. Dieser Algorithmus wird nur in der Strahlsuchebene (Dialogfenster *Kaustik*) ausgeführt. In allen anderen Messebenen wird die Messfenstergröße über den Füllfaktor bestimmt.

Deaktiviert man diese Funktion, muss dem Messsystem die Strahlsuchebene manuell "vorgemessen" werden. Andernfalls kann es passieren, dass das Messsystem das Messfenster am Rand des Messbereichs positioniert, so dass kein Messsignal darin liegt. Eine sinnvolle Messung ist dann nicht mehr möglich. Schaltet man den BeamFind-Funktion ab und misst dem Messsystem die Strahlsuchebene vor jeder Kaustikmessung vor, kann man pro Kaustikmessung ca. 20 sec Messzeit einsparen.

Fazit: Diese Funktion sollte standardmäßig aktiviert sein, und nur von erfahrenen Usern deaktiviert werden. Das Abschalten dieser Funktion kann bei Kaustikmessungen die Messdauer um ca. 15 % verkürzen.

Füllfaktor

Der Füllfaktor ist der Quotient aus dem Strahldurchmesser und der Seitenlänge des Messfensters. Solange das Messsignal nicht beschnitten wird und im Messergebnis keine Rauschanteile und kein Fehler in der Offsetbestimmung enthalten sind, hat der Füllfaktor keinen Einfluss auf die Messgenauigkeit. Da aber jedes reale Messsignal mit Rauschen behaftet ist und da die Genauigkeit mit welcher der Nulllevel eines Messsignal bestimmt werden kann endlich ist, können zu kleine Füllfaktoren zu großen Messungenauigkeiten führen. Je

nachdem wie groß das RMS-Rauschen und der Fehler in der Nulllevelbestimmung in einer Messebene sind, hat der für das rechnerisch bestmögliche Messergebnis optimale Füllfaktor einen anderen Wert. Für TopHat- und Gaußstrahlförmige Laserstrahlen sollte der Füllfaktor zwischen 0,5 und 0,7 liegen. Weist ein Strahl jedoch Beugungsringe auf und sollen diese vollständig im Messfenster liegen, kann der optimale Wert für den Füllfaktor auch zwischen 0,5 und 0,6 liegen.

Standardmäßig sollte der Wert: "Max 0.7 Min 0.5 Soll 0.6" eingestellt sein. Für stark deformierte Strahlen kann der Wert auf "Max 0.6 Min 0.4 Soll 0.5" geändert werden.

Schriftgrad

Hier kann die Schriftgröße für die wichtigsten Darstellungsfenster geändert werden. Werkseitig ist 10 Punkt eingestellt.

Fenster öffnen

Bei aktivierter Fenster öffnen-Funktion werden beim Start der LaserDiagnosticsSoftware LDS einige grundlegende Fenster geöffnet. Ist dies nicht erwünscht, kann die Funktion deaktiviert werden.

12.5 Darstellung

Dieses Kapitel beschreibt die Darstellung, Analyse und Speicherung der Messergebnisse.

Um Vergleiche zwischen verschiedenen Messungen durchzuführen, kann das Programm mehrere Messdatensätze gleichzeitig verwalten. Die geöffneten Datensätze werden in der Werkzeugleiste angezeigt. Um eine Darstellung zu öffnen, wird die zu untersuchende Datei in der Liste der Dateiauswahl selektiert, und danach die gewünschte Präsentationsart ausgewählt.

Mit den Symbolen in der Menüleiste können Funktionen der Dateiverwaltung als auch verschiedene Darstellungsarten direkt aufgerufen werden.

Abb. 12.20: Auswahl eines Datensatzes

In der Auswahl Ebenen kann zwischen verschiedenen Bildspeichern der Messreihe hin- und hergeschaltet werden. Bei aktivierter Ebenenauswahl ist eine Weiterschaltung ist mit den Cursortasten hoch/runter möglich. Wird die Ebenenauswahl in den Darstellungsmenüs auf **Global** gesetzt, ist ebenfalls eine Weiterschaltung ist mit den Cursortasten hoch/runter möglich.

In den Menüs für die Darstellungsart der Einzelmessungen (*Darstellung > Variable Schnitte*, *Darstellung > Isometrie* und *Darstellung > Falschfarbendarstellung*) bewirkt die Option *Autom. Skalierung* eine Ausnutzung der gesamten Darstellungsbandbreite für die Messwerte.

Darüber hinaus können Sie mit der **Ebenenauswahl** zwischen verschiedenen Bildspeichern der Messreihe hin- und herschalten. Eine Weiterschaltung ist auch mit den Cursortasten hoch/runter möglich, wenn die Ebenenauswahl selektiert ist. Wird die Ebenenauswahl in den Darstellungsmenüs auf **Global** gesetzt, ist ein simultanes Umschalten zwischen den Ebenen über die Anwahl in der Werkzeugleiste möglich. Der Titel eines Dialogfensters gibt den Namen des dargestellten Datensatzes an.

Zur parallelen Auswertung mehrerer Messungen besitzt das Programm 50 Bildspeicher, die jeweils eine Messung aufnehmen können. Diese Bildspeicher (Messebenen) können Sie auch nutzen, um bei einer Parametervariation die geänderten Messwerte aufzunehmen.

Durch die Variation der z-Position in den verschiedenen Ebenen wird eine Kaustikmessung realisiert. Durch eine Veränderung der Laserleistung lässt sich z. B. das thermische Einlaufverhalten des Systems simulieren. Analog dazu sind auch Zeitreihen möglich. Entsprechende Darstellungen ermöglicht unter anderem der Menüpunkt **Darstellung > Grafische Übersicht**.

12.5.1 Falschfarben (Menü Darstellung > Falschfarben)

Hier wird eine Falschfarbendarstellung der gemessenen Leistungsdichteverteilung erzeugt.

Abb. 12.21: Dialogfenster Falschfarben

Die verwendete Farbskala ist links eingeblendet. Für eine erhöhte Sensitivität, zum Beispiel zur Analyse von Beugungsfiguren, ist es möglich, die verwendeten Farbskalen im Menü *Darstellung > Farbtafeln* umzuschalten. Über den Schieberegler rechts neben der Farbskala können Sie Schnitte zu verschiedenen ADC-Werten mit den zugehörigen Radien anzeigen.

Neben der automatischen Skalierung gibt es noch drei weitere Skalierungsarten:

Skalierung auf Leistungsdichte

Alle Ebenen einer Kaustikmessung werden auf die maximal gemessene Leistungsdichte skaliert. Dies soll helfen die verschiedenen Ebenen besser miteinander vergleichen zu können.

Pixelskalierung

Diese Skalierung ist nur bei der Verwendung von unsymmetrischen Messfenstern von Interesse. Die Achsen der Fenster sind dann nicht länger eine Funktion der Messfenstergröße, sondern der Anzahl der gemessenen Pixel.

Skalierung auf Fenster

Bei dieser Funktion werden alle Messfenster einer Kaustikmessung auf die Größe des maximalen Messfensters vergrößert. Auch diese Funktion soll helfen, die verschiedenen Messebenen einer Kaustikmessung besser miteinander vergleichen zu können. Die Strahlachsen können in sämtlichen Skalierungsarten mit dem Aktivieren des Kontrollkästchen **Hauptachse** eingeblendet werden.

Linealfunktion

Durch Klicken mir der linken Maustaste ins Bild kann der Strahl in beliebiger Richtung vermessen werden.

12.5.2 Falschfarben (gefiltert) (Menü Darstellung > Falschfarben (gefiltert))

Die dem Filter zugrunde liegende Funktion ist eine Spline-Funktion. Sie ist unter anderem dadurch charakterisiert, dass die Lage der Maxima erhalten bleibt. Dabei werden in einer Matrize die einzelnen Pixel mit einem 1-2-1 Filter gewichtet, so dass das Rauschen verringert wird.

Dieser Filter kann auch mehrfach angewendet werden, ohne dass sich die Lage der Maxima verschiebt.

Abb. 12.22: Dialogfenster Falschfarben (gefiltert)

12.5.3 Isometrie (Menü Darstellung > Isometrie)

Dieser Menüpunkt erzeugt eine räumliche Darstellung der gemessenen Leistungsdichteverteilung einer Ebene. Die Farbdarstellung lässt sich deaktivieren. Eine Drehung der Verteilung um jeweils 90°, 180° und 270° ist möglich.

Abb. 12.23: Dialogfenster Isometrie (links mit deaktivierter Farbdarstellung)

12.5.4 Isometrie 3D (Menü Darstellung > Isometrie 3D)

Diese Funktion erzeugt die dreidimensionalen Darstellungen der Leistungsdichteverteilung einer Ebene und aller Ebenen in Falschfarben.

Das Darstellungsfenster ist zweigeteilt. Links wird die Kaustik, rechts die Leistungsdichteverteilung in einer Ebene dargestellt. Die horizontale Größe der Einzelfenster können Sie durch Ziehen des Trennbalkens mit der Maus verändern.

Die Grafiken können Sie mit der linken Maustaste um alle drei Achsen stufenlos drehen und mit der rechten Maustaste im Fenster frei positionieren.

Abb. 12.24: Dialogfenster Isometrie 3D

1	3D-Darstellung der Ebene	Blendet die 3D-Darstellung der Leistungsdichteverteilung in der Ebene vollflächig in das Darstellungsfenster ein.
2	3D-Darstellung der Kaustik	Blendet die 3D-Darstellung der Kaustik zusätzlich in das Darstellungsfenster ein.
3	Vergrößerung in der Ebene	Im linken Teil des Darstellungsfensters wird eine Vergrößerung der rechts abgebil- deten Ebene eingeblendet (den gewünschten Bereich können Sie mit der linken Maustaste im rechten Fenster anklicken).
4	Rotation	Löst eine Rotation beider Grafiken um die z-Achse aus.
5	Ebenenauswahl	Wählen Sie hier die darzustellende Ebene ein (Sie können die gewünschte Ebene auch einfach in der 3D-Kaustik mit der linken Maustaste auswählen).
6	Zoom	Schieberegler für eine stufenlose Vergrößerung der Darstellung.
7	Kontur	Schieberegler für einen Konturbeschnitt entlang der Leistungsdichte.

Tab. 12.4: Erklärung der Auswahl- und Einstellelemente

12.5.5 Übersicht 86 % bzw. 2. Moment (Menü Darstellung > Übersicht (86%)/(2. Moment)

Für die Radiusdefinition gibt es zwei wesentliche Bestimmungsmöglichkeiten:

- Bestimmung der Strahlradien nach der 86% -Leistungsdefinition, (siehe Kapitel 21.2.4 auf Seite 130).
- Bestimmung der Strahlradien nach der 2. Momentenmethode (ISO 11146), (siehe Kapitel 21.2.3 auf Seite 129).

Ebene:	Ebene 0	Ebene 1	Ebene 2	Ebene 3	Ebene 4	Ebene 5	Ebene 6	Ebene 7	Ebene 8
Radius [mm]	0.014	0.013	0.012	0.011	0.010	0.008	0.007	0.007	0.00
Position X [mm]	-0.009	-0.007	-0.009	-0.007	-0.007	-0.008	-0.007	-0.007	-0.00
Position Y [mm]	0.301	0.301	0.302	0.302	0.303	0.300	0.302	0.303	0.30
Position Z [mm]	87.750	87.770	87.790	87.810	87.830	87.850	87.870	87.890	87.91
Nullwert [A/D-Cnts]	315 000	316 750	309 750	316 000	311,750	311 000	310 750	317 000	315 50
Leistung [kW]	0 100	0 100	0 100	0 100	0 100	0 100	0 100	0 100	0.10
Radius inten. [kW/cm²]	4639 407	5281 129	6063 454	8162 947	9482 212	11963 182	15048 298	17934 973	20568.80
Peak inten. [kW/cm²]	28122.200	31650.413	35202.723	43026.258	58523.869	88542.624	124110.121	165071.888	193302.83
Datum:	25 4 2016	25 4 2016	25 4 2018	25 4 2018	25 4 2018	25 4 2016	25 4 2018	25 4 2018	25 4 201
Uhrzeit:	16:35:12	16:35:13	16:35:15	16:35:17	16:35:19	16:35:20	16:35:22	16:35:24	16:35:2
Brennweite (mm)	127 000	127 000	127 000	127 000	127 000	127 000	127 000	127 000	127.00
Z-Achsen Offset	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
X-Achsen Offset	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Y-Achsen Offset	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Koordinatenrotation (dg.)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00

Tab. 12.5: Ergebnisfenster *Darstellung > Übersicht* (86%)

					-				
Ebene:	Ebene 0	Ebene 1	Ebene 2	Ebene 3	Ebene 4	Ebene 5	Ebene 6	Ebene 7	Ebene 8
Redius (mm)	0.015	0.014	0.012	0.011	0.010	0.000	0.000	0.007	0.008
Radius X [mm]	0.010	0.014	0.013	0.011	0.010	0.005	0.000	0.007	0.000
Radius Y [mm]	0.010	0.014	0.013	0.012	0.010	0.005	0.003	0.007	0.000
Winkel (°1 (x/v-Richtung)	.2.3	-2.6	-4.0	0.011	-7.1	-12.0	1.0	3.4	13.1
Position X [mm]	.0.009	.0.007	.0.009	.0.007	-0.007	-0.009	-0.007	.0.007	-0.008
Position Y [mm]	0.301	0.301	0.302	0.302	0.303	0.300	0.301	0.302	0.302
Position Z [mm]	87,750	87,770	87,790	87,810	87,830	87,850	87.870	87,890	87.910
	01.100	01.110	01.100	01.010	07.000	01.000	01.010	01.000	01.010
Nullwert [A/D-Cnts]	315.000	316,750	309,750	316.000	311.750	311.000	310,750	317,000	315,500
Leistung [kW]	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100
Peak inten. [kW/cm²]	28122.200	31650.413	35202.723	43026.258	58523.869	88542.624	124110.121	165071.888	193302.834
Datum:	25 4 2018	25 4 2016	25 4 2016	25 4 2016	25 4 2016	25 4 2016	25 4 2016	25 4 2016	25 4 2016
Uhrzeit:	16:35:12	16:35:13	16:35:15	16:35:17	16:35:19	16:35:20	16:35:22	16:35:24	16:35:25
Brennweite (mm)	127 000	127 000	127 000	127 000	127 000	127 000	127 000	127 000	127 000
Z-Achsen Offset	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
X-Achsen Offset	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Y-Achsen Offset	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Koordinatenrotation [dg.]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Wellenlänge [µm]	1.064	1.064	1.064	1.064	1.064	1.064	1.064	1.064	1.064
Radius X' [mm]	0.016	0.014	0.013	0.012	0.010	0.009	0.008	0.007	0.008
Radius Y' [mm]	0.014	0.013	0.012	0.011	0.009	0.008	0.007	0.006	0.008
Füllfaktor	0.497	0.458	0.420	0.551	0.486	0.425	0.375	0.647	0.590
Elliptizität (Rmin/Rmax)	0.932	0.925	0.920	0.906	0.893	0.425	0.876	0.928	0.550

Tab. 12.6: Ergebnisfenster *Darstellung > 2. Momente*

Die Parameter und Ergebnisse der aktuell gewählten Ebene sind blau unterlegt. Wenn das Messsignal das Nullniveau nur wenig überschreitet, werden die Messergebnisse nicht schwarz sondern grau dargestellt. In diesem Fall prüfen Sie, ob die Messwerte vertrauenswürdig sind oder verworfen werden müssen und die Messung eventuell mit anderen Einstellungen wiederholt wird.

Die Einträge Leistung, Brennweite und Wellenlänge sowie die Kommentare können auch nachträglich geändert werden. Dazu dient im Menüpunkt **Messung > Messumgebung** die Schaltfläche **Aktualisieren**.

12.5.6 Kaustik (Menü Darstellung > Kaustik)

Die Ergebnisse der Kaustikmessung können Sie mit dem Menüpunkt **Darstellung > Kaustik** anzeigen. Die Abb. 12.25 auf Seite 70 zeigt auf der linken Seite die berechneten Strahlparameter wahlweise auf Basis der 86 %-Radien oder die 2. Momentenauswertung nach ISO 11146. In der Bildmitte zeigt die Grafik den Kaustikverlauf an. Die Strahlradien sind dabei in Strahlausbreitungsrichtung aufgetragen. Rechts ist eine Falschfarbendarstellung der mit der Maus angewählen Messebene und deren numerische Ergebnisse eingebendet, die für diese Ebene berechnet wurden.

Abb. 12.25: Dialogfenster Kaustik

Die rote Linie stellt die Ausgleichskurve entsprechend des berechneten Fits dar, sie kann über das Kontrollkästchen *Fit* in der 2D-Darstellung eingeblendet werden.

Der Rohstrahldurchmesser **Rohstrahl (dur.)** entspricht dem Strahldurchmesser auf der Fokussieroptik, siehe Abb. 5.3 auf Seite 15.

Ausgleichskurve

Zur Auswertung der Kaustik wird eine hyperbolische Ausgleichskurve (ISO11146) an die Messwerte angepasst. Diese Ausgleichskurve beschreibt mathematisch die Propagation eines idealen Laserstrahls. Der Verlauf der Ausgleichskurve wird theoretisch bestimmt durch die folgenden Parameter:

- Normierte Beugungsmaßzahl M² bzw. Strahlpropagationsfaktor K
- z-Position
- Fokusradius
- Rayleighlänge

Normierte Beugungsmaßzahl M² (bzw. der Strahlpropagationsfaktor K= $\frac{1}{M^2}$)

Die normierte Beugungsmaßzahl beschreibt, wie gut sich der betreffende Laserstrahl im Verhältnis zum Grundmode fokussieren lässt. Der Grundmode ist der theoretisch bestmögliche Strahl und hat eine Beugungsmaßzahl M² von 1. Alle anderen Strahlen haben größere M²-Werte.

Z-Position

Dieser Wert gibt die Lage der Fokuspunkte in der z-Richtung an. Da die Ausgleichskurve alle Messpunkte berücksichtigt, ist die berechnete z-Position nicht zwingend am Ort des kleinsten gemessenen Strahlradius.

Fokusradius

Der Fokusradius ist der kleinste Strahlradius in der Kaustik. In der Regel ist dieser Wert dem kleinsten gemessenen Wert ähnlich.

Aus verschiedenen Gründen kann es vorkommen, dass keine Anpassung an die Messwerte durchgeführt wurde. Dies ist dadurch zu erkennen, dass die Ausgleichskurve grob neben den Messwerten liegt. In diesem Fall sind die Parameter der angepassten Ausgleichskurve zu verwerfen.

Rayleighlänge

Die Rayleighlänge ist ein abgeleiteter Parameter und beschreibt den Abstand vom Fokus in z-Richtung, bei dem der Strahlradius um den Faktor $\sqrt{2}$ (=1.41) zugenommen und die Strahlfläche um den Faktor 2 zugenommen hat. Die Rayleighlänge wächst mit der Brennweite der Fokussieroptik und der Strahlqualität. Die doppelte Rayleighlänge ist ein ungefährer Anhaltspunkt, bis zu welcher Materialdicke (Metall) eine Bearbeitung mit der eingesetzten Optik möglich ist.

Damit die angepassten Werte eine möglichst hohe Aussagekraft besitzen, ist die Messung über einen z-Bereich von mindestens ±2 Rayleighlängen durchzuführen. Wie in der ISO 11146 gefordert, sind 5 bis 6 Rayleighlängen ideal. Dieser Forderung steht jedoch die manchmal schnell sinkende Leistungsdichte des zu vermessenden Laserstrahls gegenüber. Bei einem Abstand von 2 Rayleighlängen vom Fokus ist die Leistungsdichte auf ein Viertel abgesunken.

Die Kaustikmessung besteht in diesem Fall aus einem Kompromiss zwischen dem gewünschten Messbereich in der z-Richtung und der zu einer einwandfreien Messung notwendigen Leistungsdichte (Signal/Rausch-Verhältnis).

Zyklische Kaustikmessungen

Zur Durchführung zyklischer Kaustikmessungen sollten die Einstellungen der verschiedenen Aufnahmeparameter in einer Datei gespeichert werden. Diese Daten sind dann bei Bedarf jederzeit verfügbar und können für eine neue Messung verwendet werden. Für eine "schnelle" Prüfung des Strahls empfiehlt sich eine Messung mit nur wenigen Ebenen, wobei bei Bedarf auch nur ein Teil der Kaustik ausgemessen wird.

Solch ein Messzyklus ist in der Regel innerhalb von 2 bis 3 Minuten beendet; mit einer Ethernet-Verbindung wesentlich schneller. Für Prüfungen nach einem Laser- und Anlagenservice bietet sich eine Messung mit mehr Ebenen an, weil hier die Messergebnisse mit höherer Genauigkeit ermittelt werden.

Zum Start der Messung werden die gespeicherten Kaustikdaten aus einer Voreinstellungsdatei geladen (Menü **Datei > Voreinstellungen** laden). Nach der Eingabe des gewünschten Dateinamens werden die entsprechenden Daten geladen.

Details (Menü Darstellung > Kaustik > Details)

Abb. 12.26: Ergebnisfenster Ergebnisse X,Y (2. Moment)

Zur Untersuchung asymmetrischer Strahlen können die Abmessungen der Hauptachsen der Strahlen bestimmt werden. Ausgehend von diesen Werten berechnet das Programm auch richtungsabhängige Strahlpropagationsfaktoren und Strahllagewerte. Die zugehörigen Kurven werden über die beiden Kontrollkästchen Radius X, Y eingeblendet, die Zahlenwerte stellt das Ergebnisfenster bereit.

Rohstrahl (Menü Darstellung > Kaustik > Rohstrahl)

Abb. 12.27: Ergebnisfenster Rohstrahl

Bei einer Messung nach ISO 11146 können aus der internen Kaustik die Rohstrahlparameter rückgerechnet werden. Die numerischen Werte werden zusätzlich im Ergebnisfenster "Rohstrahl" grafisch dargestellt.

Bewertung (Menü Darstellung > Kaustik > Bewertung)

Diese Funktion prüft, ob die Ergebnisse und Einstellungen der Kaustikmessung im zuverlässigen Bereich liegen.

Abb. 12.28: Ergebnisfenster Messungsbewertung

Unter "Abweichung" wird die mittlere relative Standardabweichung des Kaustikfits von den Radien nach der 2. Momentmethode aufgeführt. Ein "Häkchen" (✓) wird gesetzt, wenn die Standardabweichung kleiner 3,5 % ist und wenn keiner der Messwerte außerhalb eines Bereiches von ± 3 % Standardabweichung liegt. Bei negativer Bewertung (×) der Abweichung werden auch die betroffenen Messebenen angezeigt. Die angezeigten Ebenen sind von links nach rechts in der Größe der Abweichung angeordnet. Das heißt, die Ebene, in der die Abweichung am größten ist (siehe Abb. 12.28 auf Seite 74 die Ebene 2) steht an erster Stelle.

Bewertete Funktionen	Prüfkriterium	Positive Bewertung ✓
Abweichung	Mittlere relative Standardabwei- chung des Kaustikfits nach der 2. Momentmethode	Standardabweichung < 3,5 %, kein Messwert außerhalb eines Bereiches von \pm 3 % Standardabweichung
Füllfaktor	Bezeichnet das Verhältnis des Strahldurchmessers zur Seitenlänge des Messfensters	Im Bereich 0,35 - 0,7
Z-Bereich	Messbereich in z-Richtung	Mindestens 4 Rayleighlängen
Messebenen	Anzahl der Messebenen pro Rayleighlänge	Mindestens 3 Messebenen pro Rayleighlänge
$(Z_{Min}+Z_{r}) < Z_{0} < (Z_{Max}-Z_{r})$	Mindestmessbereich oberhalb und unterhalb der Fokusebene	Der Fokus liegt innerhalb des Mindestmessbereichs und dieser Bereich beträgt mindestens eine Rayleighlänge in jede z-Richtung.
Amplitude (>2000)	Signalprüfung	Über 2000 counts
Signalübersteuerung (<4000)	Signalprüfung	Unterhalb von 4000 Counts

Tab. 12.7: Bewertungskriterien

Sind alle Kriterien erfüllt, haben die Messergebnisse eine hohe Zuverlässigkeit. Die absolute Genauigkeit lässt sich aus der Standardabweichung des Fits nicht angeben, da zusätzlich sämtliche systematischen Messfehler sowie die Genauigkeit der Kalibrierung in den Absolutfehler eingehen.

12.5.7 Rohstrahl (Menü Darstellung > Rohstrahl)

Während bei der eigentlichen Messung die Parameter des fokussierten Strahls im Vordergrund stehen, sind bei dem LaserQualityMonitor LQM die rückgerechneten Daten des Rohstrahls als Ergebnis der Messung von Interesse. Aus diesem Grund wurde die LaserDiagnosticsSoftware LDS um eine weiteres Darstellungsfenster ergänzt.

Abb. 12.29: Darstellung der rückgerechneten Daten des Rohstrahls

In diesem Fenster wird der rückgerechnete Rohstrahl bezüglich dem Messgerät dargestellt. Zusätzlich haben Sie die Möglichkeit im Fenster **Messung > Messumgebung** einen Geräteoffset einzugeben. Dieser beschreibt den Abstand zwischen Messgeräteintritt und Strahlaustritt am Laser. So können Sie sich einen schnellen Überblick über die Lage der Strahltaille bezüglich dem Messgerät oder dem Strahlaustritt am Laser verschaffen.

Neben einer grafischen Übersicht finden sich in diesem Darstellungsfenster auch alle wichtigen Strahlparameter in tabellarischer Form.

Die einzelnen Messebenen sind in diesem Fenster nicht mehr zu sehen. Es ist somit kein direkter, visueller Rückschluss auf die Qualität der Messung mehr möglich. Deshalb werden in diesem Fenster nicht nur die Rohstrahlparameter dargestellt, sondern auch die Ergebnisse einer numerische Bewertung der Vermessung des fokussierten Strahls.

12.5.8 Symmetrieprüfung (Menü Darstellung > Symmetrieprüfung)

Dieses Darstellungsmenü prüft die Rotationssymetrie der Leistungsdichteverteilung eines Laserstrahls. Es kann z. B. in Verbindung mit dem Monitorbetrieb (*Messung > Einzelmessung > Monitor*) zur Justierung von Laserresonatoren benutzt werden.

Im Folgenden werden in den Abbildungen Abb. 12.31 auf Seite 76 und Abb. 12.32 auf Seite 77 zwei Beispiele für die möglichen Resultate der Symmetrieprüfung an einem elliptischen Strahl gezeigt.

Abb. 12.30: Dialogfenster (Menü Darstellung > Isometrie) Leistungsdichteverteilung eines elliptischen Strahls

Die in Abb. 12.30 auf Seite 76 dargestellte Leistungsdichteverteilung eines elliptischen Strahls ergibt zusammen mit der **Symmetrieprüfung** folgende Resultate.

Abb. 12.31: Dialogfenster Symmetrieprüfung in kartesischen Koordinaten für einen elliptischen Strahl

Die Abszisse in Abb. 12.31 auf Seite 76 zeigt den Winkel und die Ordinate den Strahlradius mit den Schnittlinien bei verschiedenen Leistungen zwischen 86 % und 10 % der Gesamtleistung.

Abb. 12.32: Dialogfenster Symmetrieprüfung in Polarkoordinaten für einen elliptischen Strahl

Auf dem Bildschirm erscheinen die Kurven in unterschiedlichen Farben. Der Radius ist in Pixel-Koordinaten angegeben. Das Minimum und das Maximum der Radiuswerte kann ausgewählt werden. Auf der rechten Seite ist die Standardabweichung der verschiedenen Radiuswerte angezeigt. Diese Werte geben eine genaue Information über die Symmetrie der Strahlverteilung.

Gut justierte Resonatoren erreichen Standardabweichungen im Bereich von 3 % bis 5 %. Teilweise sind sogar Werte im 1 % bis 2 %-Bereich möglich.

Eine Darstellung in Polarkoordinaten ist ebenfalls möglich (Abb. 12.32 auf Seite 77). Die eingezeichneten Linien enthalten 86 % bis 10 % der detektierten Leistung. Auf dem Bildschirm haben die Graphen verschiedene Farben. x- und y-Achse skalieren in Pixelwerten.

12.5.9 Feste Schnitte (Menü Darstellung > Feste Schnitte)

Angezeigt werden die Schnittlinien bei verschiedenen Leistungsniveaus. Ausgewählt sind Schnittlinien bei: 86 %, 80 %, 60 %, 40 %, 20 % und 10 % der Gesamtleistung.

In dieser Darstellung ist es auch möglich Abstände auszumessen, in dem man mit der Maus die Start- und Endpunkte der gewünschten Strecke anklickt.

Abb. 12.33: Dialogfenster *Feste Schnitte*

12.5.10 Variable Schnitte (Menü Darstellung > Variable Schnitte)

Hier wird die räumliche Leistungsdichteverteilung anhand frei wählbarer Schnitte dargestellt. Es können Schnitte in x- und y-Richtung sowie in Leistungsdichte-Koordinaten (A/D-Wandler-Counts) durchgeführt werden. Die Lage der Schnitte ist durch Schieberegler oder per Tastatur einstellbar.

Abb. 12.34: Dialogfenster Variable Schnitte

Einstellen per Tastatur:

- für die x-Richtung über die Taste x, um den Wert zu vergrößern und *shift> x*, um ihn zu verkleinern.
- für die y-Richtung über die Taste y, um den Wert zu vergrößern und <shift> y, um ihn zu verkleinern.
- für die Leistungsdichte (Intensität) über die Taste i um den Wert zu vergrößern und *shift> i*, um ihn zu verkleinern.

Im Bereich links unten werden die aktuellen Schnittkoordinaten, Leistungsdichten, der durch den Schnitt erzeugte Radius und das relative Volumen angezeigt. Die Werte werden berechnet basierend auf der korrekt eingegebenen Laserleistung.

Rechts oben kann man auf die Skalierungen umschalten. Darunter befindet sich ein Eingabefeld, in dem Sie den zur Radiusbestimmung erwünschten Leistungsabfall (-einschluss) eintragen können. Dieser Wert korreliert mit den gegebenen Leistungspegeln im Fenster.

Neben diesen Funktionen bietet dieses Fenster noch eine Menge weiterer Informationen über die Bedingungen, unter denen gemessen wurde. Ebenso werden die Verstärkung, die Zahl der Auflösung sowie die zur Messung verwendete Software-Version während der Messung angezeigt.

Ein Klick auf die Schaltfläche *CCD Info* öffnet ein Fenster mit zusätzlichen Informationen zu den Geräteparametern wie Trigger Mode, Trigger Delay, Integrationsdauer, Vergrößerung, Art des Objektivs.

CCD Info		_ X _
Kamera Chip	: CCD	
Trigger Mode	: ow-Strahl, mit Belichtungszeit	
CCD Mode	: Measuring Data	
Trigger Level	: 2001	
Trigger Delay	: 4965 [µs]	
Integrationsdauer	: 2508 [µs]	
Filter Faktor	: 1.000	
Vergrößerung	: 1 : 4.970	
Objektiv Vergrößerung	: 1 : 4.970	
Objektiv Hersteller	: PRIMES -e	
Objektiv Typ	: 5x	
Justage Objektiv Aktiv	: nein	
Justage Objektiv Vergrößerung	: 1 : -0.179	
Justage Objektiv Hersteller	: PRIMES -e	
Justage Objektiv Typ	: 5x	
Verlängerungsweg Aktiv	: nein	
CCD diffusion Radius	: 0	
CCD diffusion Amplitude	: 0.00	
	ок	

Abb. 12.35: Anzeigefenster CCD Info

12.5.11 Graphische Übersicht (Menü Darstellung > Grafische Übersicht)

Das Anzeigefenster **Graphische Übersicht** bietet viele Möglichkeiten, die Messwerte aus den einzelnen Messebenen darzustellen. Insgesamt kann dieses Fenster 20 verschieden Graphen darstellen. Die mögliche Auswahl für die x- und y-Koordinaten sind in der Tab. 12.8 auf Seite 80 aufgelistet.

y-Achse	x-Achse
Radius	Leistung
x-Position	Zeit
y-Position	Ebene
Winkel	Position
Elliptizität	

Tab. 12.8: Auswahl für die x/y-Koordinaten

Abb. 12.36: Anzeigefenster Grafische Übersicht - Beispiel zur Auswertung einer Zeitreihe - Radius/Zeit

Siehe Kapitel 12.4.9 auf Seite 60, Abschnitt "Manuelle Kaustikmessung als Zeitreihe (Menü Messung > Kaustik > Manuelle Einstellung)"

12.5.12 Systemstatus (Menü Darstellung > Systemstatus)

Für den LaserQualityMonitor LQM nicht relevant.

12.5.13 Evaluierungsparameter (Menü Darstellung > Evaluierungsparameter)

Im LDS-Installationsordner im Verzeichnis "System" (C:\Programme\Primes\LDS2.98\System) finden Sie vordefinierte Parameterdateien für die Rohstrahlrückrechnung (RawBeamParams.eval) und die Kaustikauswertung (beamparams.eval). Unter dem Menüpunkt **Darstellung > Evaluierungsparameter** können Sie diese aufrufen.

	Min	Warn	let	Warn	May
Standard Eit [96]	0.00	0.50	3.49	2.00	5.00
Device Ctoble Dat	100	0.00	0.40	5.00	100
Actigmentiam Detic (9/1	-100	-50	0.00	0.50	100
Asugmausmi Rauo [%]	0.00	0.00	0.03	0.00	0.1000
Focus Radius X [mm]	0.0100	0.0300	0.0333	0.0500	0.1000
Focus Radius F [mm]	0.0100	0.0300	0.0320	0.0500	0.1000
Focus Radius (mm)	0.0100	0.0300	0.0380	0.0000	0.1000
Focus Position X [mm]	-0.200	-0.100	0.021	0.100	0.200
Focus Position Y [mm]	-0.200	-0.100	0.040	0.100	0.200
Focus Position 2 [mm]	80.000	82.000	82.332	85.000	90.000
Value	0.50	0.67	0.04	1.00	1.00
Kvalue X	0.50	0.67	0.86	1.00	1.00
Kvalue Y	0.50	0.67	0.90	1.00	1.00
Caustic Min Power [W]	50	100	0	10000	10000
Caustic Max Power [W]	0	0	0	7500	8000
Caustic Mean Power [W]	0	50	0	7500	8000
	0.200	0.250	0.532	0.750	1.000
▼ M²	1.00	1.00	1.57	1.50	2.00
I♥ M²X	1.00	1.00	1.57	1.50	2.00
✓ M ² Y	1.00	1.00	1.57	1.50	2.00
I BeamDirection [°]	0.00	0.00	0.36	2.00	3.00
BeamDirection X [°]	0.00	0.00	0.36	2.00	3.00
BeamDirection Y [*]	0.00	0.00	0.36	2.00	3.00
Rayleigh Length [mm]	0.01	0.03	2.80	10.00	30.00
 Divergence [mrad] 	0.05	0.10	10.00	0.35	0.40

Abb. 12.37: Anzeigefenster Evaluierungsparameter mit geöffneter Parameterdatei

Die gewünschten Parameter und ihre Grenzwerte können Sie mit dem Programm "PRIMES-EvalEditor" vorgeben und in einer Evaluierungsparameterdatei (*.eval) speichern. Das Programm wird beim LDS-Setup mitinstalliert.

MainWindow									
Load Save About									
ID	Name	Unit	Enable	Minimum	Minimum Warn	Value	Maximum Warn	Maximum	
StandardFit	Standard Fit	%		0,0000 💌	0,2000 💌	3.4787	4,0000 💌	6,0000 🗬	
PowerStable	Power Stable	W	✓	-100,0000	-50,0000	0.0000	50,0000	100,0000	
AstigmatismRatio	Astigmatism Ratio	%		0,0000 💌	0,0000 💌	0.0328	0,5000 💌	1,0000	
RadiusX	Focus Radius X	mm	✓	0,1400 🖍	0,1400 💌	0.0333	0,1500	0,1600 🔹	
RadiusY	Focus Radius Y	mm	V	0,1400 💌	0,1400 💌	0.0320	0,1500	0,1600	
Radius	Focus Radius	mm	✓	0,1400 💌	0,1400 💌	0.0386	0,1500	0,1600	
PositionX	Focus Position X	mm	V	-3,0000	-1,0000 💌	0.0207	1,0000	3,0000	
PositionY	Focus Position Y	mm		-3,0000 💌	-1,0000 💌	0.0404	1,0000 🗢	3,0000 💌	
PositionZ	Focus Position Z	mm	V	75,0000 💌	80,0000 💌	82.3315	90,0000 🗬	95,0000 🔹	
KValue	KValue			0,0200 💌	0,0200 💌	0.6362	0,0400 🗬	0,0500 👻	
KValueX	KValue X			0,5000 🗬	0,6700	0.8581	1,0000	1,0000 🗣	

Abb. 12.38: Dialogfenster EvalEditor mit geladener *.eval-Datei

i

12.5.14 Evaluiere Dokument (Menü Darstellung > Evaluiere Dokument)

Die Evaluierungsfunktion vergleicht wählbare Strahlparameter und deren einstellbare Grenzwerte mit den Ergebnissen einer aktuellen oder gespeicherten Messung.

Unter dem Menüpunkt *Darstellung > Evaluiere Dokument* der LDS wird folgendes Dialogfenster geöffnet:

Abb. 12.39: Fenster Evaluiere Dokument zum Laden einer Evaluierungsdatei

Die Schaltfläche *Lade Dokument* öffnet ein Dateiauswahl-Fenster, über das Sie eine gespeicherte Messdatei (*.foc) auswählen können.

Die Schaltfläche *Lade Profil* öffnet ein Dateiauswahl-Fenster, über das Sie eine Evalierungsparameterdatei (*.eval) auswählen können.

Die Schaltfläche **Evaluiere** löst eine Bewertung aus (siehe Abb. 12.40). Die einzelnen Evaluierungsparameter und das Ergebnis der Bewertung werden angezeigt. Die Gesamtbewertung (Result) aller Ergebnisse wird durch ein dreifarbiges Ampelsymbol dargestellt.

Bewertungskriterium: Nur wenn alle Einzelbewertungen in Ordnung sind, wird die Gesamtbewertung im Ampelsymbol grün angezeigt.

	Min	Warn	Ist	Warn	Max	
Standard Fit [%]	0.00	0.50	0.90	3.00	5.00	-
Power Stable [W]	-100	-50	0	50	100	
Astigmatism Ratio [%]	0.00	0.00	0.16	0.50	1.00	
Focus Radius X [mm]	0.0100	0.0300	0.0282	0.0500	0.1000	
Focus Radius Y (mm)	0.0100	0.0300	0.0274	0.0500	0.1000	-
Focus Radius [mm]	0.0100	0.0300	0.0279	0.0500	0.1000	
Focus Position X [mm]	-0.200	-0.100	0.145	0.100	0.200	
Focus Position Y [mm]	-0.200	-0.100	0.157	0.100	0.200	
Focus Position Z [mm]	80.000	82.000	211.140	85.000	90.000	-
KValue	0.50	0.67	0.92	1.00	1.00	
KValue X	0.50	0.67	0.90	1.00	1.00	Result
KValue Y	0.50	0.67	0.94	1.00	1.00	
Caustic Min Power [W]	50	100	100	10000	10000	
Caustic Max Power [W]	0	0	100	7500	8000	
Caustic Mean Power [W]	0	50	100	7500	8000	
BPP	0.200	0.250	0.368	0.750	1.000	
✓ M ²	1.00	1.00	1.09	1.50	2.00	
M² X	1.00	1.00	1.11	1.50	2.00	
✓ M ² Y	1.00	1.00	1.06	1.50	2.00	
BeamDirection [°]	0.00	0.00	1.50	2.00	3.00	
BeamDirection X [°]	0.00	0.00	1.26	2.00	3.00	
BeamDirection Y [°]	0.00	0.00	0.81	2.00	3.00	Lade Dokument
Rayleigh Length (mm)	0.01	0.03	2.12	10.00	30.00	
 Divergence [mrad] 	0.05	0.10	26.37	0.35	0.40	Lade Profil

Abb. 12.40: Dialogfenster der Evaluierung

Ein Überschreiten der Warn- oder Grenzwerte hat Einfluss auf die Farbdarstellung im Ampelsymbol. Sobald ein Warnwert über- oder unterschritten wird, ist der gelbe Kreis gefüllt. Werden die Grenzwerte (Min/Max) über- oder unterschritten, ist der rote Kreis gefüllt. Die Ist-Werte in der Tabelle des Bewertungsfensters werden ebenfalls entsprechend farbig markiert.

Abb. 12.41: Ampelfarben beim Überschreiten der Warn- und Grenzwerte

Das Gesamtergebnis der Evaluierung können Sie mit der Schaltfläche Speichern in einer Datei sichern.

12.5.15 Farbtafeln (Menü Darstellung > Farbtafeln)

Es sind verschiedene Farbtabellen verfügbar. Sie können zwischen den Farbtabellen hin- und herschalten. So kann die Zuordnung von A/D-Wandlerwerten und den verschiedenen Farbskalen variiert werden.

Drei Einstellungen sind möglich:

- Lineare Farbtabelle (Grundeinstellung)
- Farbtabelle analog der Wurzelfunktion
- Farbtabelle analog der vierten Wurzelfunktion

Diese Funktionen können besonders bei der Analyse geringer Variationen in der Nähe des Nullniveaus hilfreich sein; z. B. zur Analyse von Beugungsphänomenen.

Abb. 12.42: Dialogfenster Farben Setup - Lineare Farbtabelle und 2. Wurzel Farbtabelle

12.5.16 Werkzeugleiste (Menü Darstellung > Werkzeugleiste)

Durch Anklicken im Menü *Darstellung > Werkzeugleiste* wird die Werkzeugleiste ein- oder ausgeblendet.

Abb. 12.43: Ein- oder Ausblenden der Werkzeugleiste

12.5.17 Position (Menü Darstellung > Position)

Dieses Menü ermöglicht es, das Gerät in die Parkposition zu verfahren.

Position	×
Z-Position Einstellung: General 2-Position [mm] Fotus Position 148.876 [mm] Park Position Umgedreht Mode: pinhole Fahren Fokus Aktualisieren	
Y-Position Einstellung:	

Abb. 12.44: Dialogfenster Position

12.5.18 Evaluation (Option) (Menü Darstellung > Evaluation)

Mit dieser Bewertungsfunktion können Sie verschiedene Parameter einer gemessenen Kaustik (.foc-Datei) mit vorgegebenen Grenzwerten (.pro-Datei) vergleichen und bewerten. Das Bewertungsergebnis wird optisch mit einem LED-Symbol dargestellt (rot=schlecht, grün=gut). Das Gesamtergebnis (Feld *Ergebnis*) wird nur dann als gut bewertet, wenn die Grenzen aller kritischen Parameter (📩) eingehalten sind.

tem Name	Value	Min	Max	Ev	Summe
🛛 슜 Focus radius (mm)	0.146	0.090	0.150	•	Parameter in Grün: 3
Focus radiusX [mm]	0.147	0.090	0.150	•	Parameter in Rot: 4
Focus radiusY [mm]	0.145	-0.015	0.150	•	Kritisch in Grün: 1
Focus positionX [mm]	0.012	-0.400	0.400		Kritisch in Rot: 2
Focus positionY [mm]	-0.112	-0.400	0.400		
🛛 슜 Focus positionZ [mm]	79.565	5.000	6.000	•	
🛛 К	0.024	0.700	0.950	•	- Ergebnie
] Кх	0.024	0.700	0.950		Eigebnis
] Ку	0.025	0.700	0.950		_
 Rayleigh length [mm] 	1.538	2.000	5.000	•	
Rayleigh lengthX (mm)	1.561	2.000	5.000		Schlecht
Rayleigh lengthY (mm)	1.515	2.000	5.000		l
Astigmatic difference	0.006				Öffne Doc
🛛 슜 Average power [KW]	0.900	0.320	0.360	•	
					Öffne Profil
					Kaustik Sec. Moments 💌
					Evaluiere

Abb. 12.45: Dialogfenster *Evaluation*

Die Parameter, die Grenzwerte und die Kennzeichnung als kritischer Wert werden in einer Profildatei vorgegeben (Textdatei, siehe Beispieldatei in Abb. 12.46 auf Seite 86).

	1	//profile format
	2	//"{parameter name} (checked critical min max)
	3	//"parameter name is predefined, please don't change it
	4	
	5	//"checked flag", indicate if this parameter will be evaluated, can be 1 or 0
	6	///"critical flag", indicate if this parameter is critical, can be 1 or 0
☆	7	//"min", min value of the boundary
~	8	//"max", max value of the boundary
	9	{Focus radius [mm]} (1 1 0.27 0.33)
	10	{Focus radiusX [mm]} (1 0 0.28 0.37)
	11	{Focus radiusY [mm]} (1 0 0.28 0.37)
	12	{Focus positionX [mm]} (0 0 -0.3 0.3)
	13	{Focus positionY [mm]} (0 0 -0.3 0.3)
	14	{Focus positionZ [mm]} (1 1 12.0 14.0)
	15	{K} (0 0 0.19 0.30)
	16	{Kx} (0 0 0.2 0.28)
	17	{Ky} (0 0 0.2 0.28)
	18	{Rayleigh length [mm]} (0 0 5.0 8.0)
	19	{Rayleigh lengthX [mm]} (0 0 5.0 8.0)
	20	{Rayleigh lengthY [mm]} (0 0 5.0 8.0)
	21	{Astigmatic difference} (1 1 -0.2 0.2)
	22	{Average power [KW]} (1 1 0.5 0.55)

Abb. 12.46: Beispiel für eine Profildatei

So führen Sie eine Bewertung durch:

- 1. Klicken Sie auf die Schaltfläche Öffne Doc und wählen Sie Ihre Messdatei aus (.foc-Datei).
- 2. Klicken Sie auf die Schaltfläche Öffne Profil und wählen Sie Ihre Profildatei aus (.pro-Datei).
- 3. Wählen Sie in der Auswahl *Kaustik* die gewünschte Radiusdefinition.
- 4. Klicken Sie auf die Schaltfläche Evaluiere.

12.6 Kommunikation

12.6.1 Geräte suchen (Menü Kommunikation > Geräte suchen)

Mit Hilfe dieses Menüs können Sie ein zuvor verbundenes Gerät wieder verbinden.

12.6.2 Freie Kommunikation (Menü Kommunikation > Freie Kommunikation)

Mit Hilfe dieses Menüs können Sie die Kommunikation über den PRIMES-Bus überwachen. Außerdem werden hier die Einstellungen zur Kommunikation vorgenommen (siehe Kapitel 11.3.2 auf Seite 35).

Mode				
C Seriell 🖲 TCP 🔇	USB-To-Seriell 🔽	Zweite IP 🛛 🔽	Parity Prime	es Geräte Suchen
Serielle Schnittstelle Von 64 An 161	sdelay 01000			Senden
Von 64 An 168	Init 110		J	Senden Senden
Hex Code:	Com F	Port:	⊻ -	Testen
TCP				
IP: 192.168.116.	85 Port: 6001	Verbinden	Schließen	Speichern
MAC: 00 : 00 : 00	: 00 : 00 : 00	Finde IP	Lösche IP	IP Zuweisen
Befehl			Se	enden
IP: 192.168.116.8	2 Port: 6001			
Befehl			Ser	nden
Bus monitor				
Connecting to Device CONNECTED to 192.	ip 192.168.116.85 port 60 68.116.85:6001 to structure CRC CRC C to EEPROM	01		
Messdaten anzeigen Debuginfo anzeigen	Löschen Cop	y <u>Schließer</u>	🔽 Bus-Pr	otokoll schreiben

Abb. 12.47: Dialogfenster Kommunikation > Freie Kommunikation

12.6.3 Liste gesuchter Geräte (Menü Kommunikation > Liste gesuchter Geräte)

Jedes Gerät von PRIMES hat eine bestimmte Bus-Adresse. Soll mit der LaserDiagnosticsSoftware LDS ein Gerät bedient werden, muss diese Adresse hier eingetragen sein. Hier können Sie auch Adressen hinzufügen oder entfernen.

Abb. 12.48: Dialogfenster Liste gesuchter Geräte

Die folgenden Adressen für sämtliche PRIMES-Geräte können in der Geräteliste aufgeführt sein:

80, 92, 112, 113, 114, 144, 145, 152, 161, 168

Für den LaserQualityMonitor LQM muss die Adresse 168 eingetragen sein.

12.7 Skript

Mit Hilfe von Skripten lassen sich komplexe Messabläufe automatisch steuern. Skripte sind Programme, die in diversen Skriptsprachen geschrieben sind. Skripte werden fast ausschließlich in Form von Quelltextdateien ausgeliefert, um so ein einfaches Bearbeiten und Anpassen des Programms zu ermöglichen.

12.7.1 Editor (Menü Script > Editor)

Mit dem Skripteditor können Sie Skripte erstellen, die z. B. komplexe Messabläufe automatisch steuern. Ein Beispiel ist in Abb. 12.49 auf Seite 89 gezeigt – die Prozedur zur Strahlsuche mit dem LaserQualityMonitor LQM.

Zum Öffnen eines Skripts muss das Öffnen-Symbol angeklickt werden, danach kann eine Datei ausgewählt und per ▶ - Schaltfläche abgespielt werden. Die Schaltfläche III stoppt und ■ beendet das Skript.

Abb. 12.49: Dialogfenster Script – Skript für die Strahlsuche-Prozedur des LaserQualityMonitor LQM

12.7.2 Auflisten (Menü Script > Auflisten)

Hier werden alle vorhandenen Skripte aufgelistet.

Listing der Skripte	×
(Stopped) (Stopped)	
Beenden Schli	eßen

Abb. 12.50: Anzeigefenster Listing der Skripte

12.7.3 Python (Menü Script > Python)

Startet den Python-Editor. Die Grafische Benutzeroberfläche ist identisch mit der in Abb. 12.49 auf Seite 89 dargestellten. Python ist eine Programmiersprache mit effizienten abstrakten Datenstrukturen und einem einfachen, aber effektiven Ansatz zur objektorientierten Programmierung. Python ist sowohl für Skripte als auch für schnelle Anwendungsentwicklung sehr gut geeignet. Für die Programmierung mit Python steht eine separate PRIMES-Dokumentation zur Verfügung.

13 Messen

13.1 Sicherheitshinweise

GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Während der Messung wird der Laserstrahl auf das Gerät geleitet. Dabei entsteht gestreute oder gerichtete Reflexion des Laserstrahls (Laserklasse 4).

Der LaserQualityMonitor LQM darf in keiner der verfügbaren Konfiguration, ohne die folgenden Schutzmaßnahmen zu treffen betrieben werden. Auch bei einer gesteckten Faser im Kollimator oder im Faseradapter müssen sämtliche Schutzmaßnahmen eingehalten werden.

- Tragen Sie Laserschutzbrillen, die an die verwendete Leistung, Leistungsdichte, Laserwellen länge und Betriebsart der Laserstrahlquelle angepasst sind.
- Tragen Sie geeignete Schutzkleidung und Schutzhandschuhe.
- Schützen Sie sich vor Laserstrahlung durch trennende Vorrichtungen (z. B. durch geeignete Abschirmwände).

GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Wird das Gerät aus der eingemessenen Position bewegt, kann im Messbetrieb vermehrt reflektierte Strahlung (Laserklasse 4) entstehen.

Befestigen Sie das Gerät so, dass es durch unbeabsichtigtes Anstoßen oder Zug an den Kabeln oder Schläuchen nicht bewegt werden kann.

ACHTUNG

Beschädigung/Zerstörung des Gerätes (nur beim HP-LQM II mit 2. Vorstufe)

Ist der Sicherheitskreis nicht angeschlossen, kann das Gerät im Fehlerfall durch Überhitzung beschädigt werden.

Schließen Sie die Lasersteuerung so an die Anschlüsse 1 bis 4 an, dass bei einer Unterbrechung dieser Verbindung der Laser abgeschaltet wird.

ACHTUNG

Beschädigung/Zerstörung des Gerätes

Aufgrund der Temperaturkontrolle wird eine Übertemperatur des Gerätes in der LaserDiagnosticsSoftware LDS angezeigt, aber das Gerät ist nicht vor thermischen Schäden geschützt.

- Schalten Sie bei einer Übertemperaturmeldung in der LaserDiagnosticsSoftware LDS den Laser unverzüglich aus.
- Der LaserQualityMonitor LQM darf daher zu keiner Zeit unbeaufsichtigt Messungen durchführen.

13.2 Auswahl und Wechsel der Messobjektive und des Neutralglasfilters

13.2.1 Auswahl des Messobjektivs

Die richtige Auswahl des Messobjektivs ist für die Qualität der Messung von entscheidender Bedeutung. Die Einsatzgrenzen für das 1:1 oder das 5:1 Objektiv zeigt das Diagramm in Tab. 13.1 auf Seite 91.

Tab. 13.1: Anwendungsbereiche der LQM-Objektive

Blauer Bereich 1:1 Messobjektiv Roter Bereich 5:1 Messobjektiv

$$d_{foc} = \frac{4 \cdot \lambda}{\pi} \cdot \frac{f_{200\text{mm}}}{d_{\text{Rohstrahl}}} \cdot M^2$$

Beispiel

Das nachfolgende Beispiel erläutert die Wahl des Objektivs auf Grund des minimalen Strahldurchmessers im LaserQualityMonitor LQM und der in Abhängigkeit vom Messobjektiv (MOB) zu erzielenden Anzahl an belichteten Pixeln.

 $\begin{array}{ll} \lambda & = 1064 \text{ nm} \\ M^2 & = 1 \\ d_{Rohstrahl} & = 7,3 \text{ mm} \end{array}$

 \rightarrow d_{foc} = 37,10 µm (d_{foc} = Fokus-Durchmesser der internen Kaustik)

Bei einen Füllfaktor von 35 % und einer Auflösung von 64 Pixel werden minimal 22 belichtete Pixel benötigt.

Anzahl der belichteten Pixel bei 4,4 µm Pixelabstand = $\frac{d_{foc}}{4,4 \text{ µm}} \cdot \beta$ (Vergrößerung des Messbjektivs 1 oder 5)

MOB 1:1 --> 37,1 µm / 4,4 µm · 1 = 8 × MOB 5:1 --> 37,1 µm / 4,4 µm · 5 = 42 ✓

13.2.2 Wechsel des Messobjektivs oder des Neutralglasfilters

Für den Wechsel eines Objektivs oder des Neutralglasfilters muss die seitliche Gehäuseplatte des LaserQualityMonitor LQM geöffnet werden:

- 1. Schalten Sie den Laser aus.
- 2. Drücken Sie die zwei Sperrriegel ein (siehe Abb. 13.1 auf Seite 92):
- Die seitliche Gehäuseplatte springt heraus.

An drei Positionen können optische Komponenten in den Strahlengang des LaserQualityMonitor LQM eingeschoben werden (siehe Abb. 13.1 auf Seite 92, Positionen 1 2, 3).

Einschub	Optische Komponente
1	5:1 Messobjektiv
2	1:1 Messobjektiv
3	Neutralglasfilter (OD-Filter)
4, 5, 6	Parkeinschübe für nicht benutzte Komponenten

Tab. 13.2: Einschub-Positionen der optischen Komponenten

Wichtig: Um Messfehler zu vermeiden, darf sich immer nur ein Messobjektiv im Strahlengang befinden.

Alle Einschübe sind über zwei Passstifte unterschiedlich kodiert, um eine Verwechslung der Objektive und des Neutralglasfilters auszuschließen.

Abb. 13.1: Einschub-Positionen der optischen Komponenten

ACHTUNG

Beschädigung des Gerätes

Verschmutzungen im Gerät können die optischen Bauteile beschädigen.

▶ Verschließen Sie nicht benutzte Einschübe immer mit den Blindeinsätzen.

Abb. 13.2: Blindeinsatz

GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Wird das Gerät mit demontierter seitlicher Gehäuseplatte betrieben, kann im Messbetrieb reflektierte Strahlung (Laserklasse 4) aus dem Gerät austreten.

Betreiben Sie das Gerät nur mit montierter seitlicher Gehäuseplatte.

- 3. Setzen Sie die seitliche Gehäuseplatte in die Aufnahmen (siehe Abb. 13.1 auf Seite 92) im Gehäuse.
- 4. Klappen Sie die seitliche Gehäuseplatte nach oben, bis die 2 Sperrriegel einrasten.
- 5. Prüfen Sie, dass die seitliche Gehäuseplatte plan am Gehäuse anliegt.

13.2.3 Neutralglasfilter

Je nach Laserstrahlquelle und Konfiguration des LaserQualityMonitor LQM kann es nötig werden, den Laserstrahl weiter abzuschwächen.

Dies wird mit einem Neutralglasfilter erreicht, der kurz vor dem CCD-Sensor in den Strahlengang gebracht wird. Die optische Dichte des Filters kann zwischen 1 (1:10) und 5 (1:100000) variiert werden.

Abb. 13.3: Neutralglasfilter

13.3 Laserstrahl mit der LaserDiagnosticsSoftware LDS ausrichten

Nach der manuellen Ausrichtung mit der Ausrichthilfe können Sie die Genauigkeit mit einer Funktion der LaserDiagnosticsSoftware LDS prüfen.

13.3.1 Laserstrahl an Position z2 im Messfenster ausrichten

- 1. Setzen Sie vorerst zum einfacheren Detektieren des Laserstrahls das 1:1 Messobjektiv ein.
- Öffnen Sie das Dialogfenster *Messung > Einzelmessung* und wählen Sie im Bereich *Messmodi* die Auswahl *VideoMode* (siehe Abb. 13.4 auf Seite 94).
- Geben Sie unter dem Schieberegler die z-Position ein (als Beispiel f
 ür den LaserQualityMonitor LQM mit 1:1 Messobjektiv = 205 mm):
- LQM: 5:1 Messobjektiv --->150 mm; 1:1 Messobjektiv ---> 205 mm
- LQM UV: 5:1 Messobjektiv ---> 55 mm; 1:1 Messobjektiv ---> 61 mm
- 4. Wählen Sie das größte Messfenster in den *Eingabefeldern X und Y* und richten Sie den Ausschnitt mit gedrückter linker Maustaste mittig aus.
- 5. Klicken Sie auf die Schaltfläche Start.
- Der LaserQualityMonitor LQM fährt die vermeintliche Fokusposition z2 der zu vermessenden Kaustik an und zeigt in sich permanent wiederholenden Messungen die Strahlposition im Messfenster an.
- 6. Richten Sie den Laserstrahl so aus, dass die Strahlposition mittig im Messfenster positioniert ist:
- Beim LaserQualityMonitor LQM mit 1. Vorstufe drehen Sie hierzu langsam an den Mikrometerschrauben und beobachten Sie die Veränderungen der Strahlposition im Messfenster.
- 7. Ist der Laserstrahl mittig im Fenster ausgerichtet, klicken Sie auf die Schaltfläche Stop.

Abb. 13.4: Einstellungen im Dialogfenster Messeinstellungen

13.3.2 Fehlwinkel des Laserstrahls über die Position z1 und z3 anzeigen

- 1. Öffnen Sie das Dialogfenster *Messung > LQM-Justage*.
- 2. Klicken Sie auf die Schaltfläche Justage Starten.
- 3. Prüfen Sie, ob der Laserstrahl eine Fehlwinkel aufweist ist (siehe Abb. 13.5 auf Seite 95):
- Wenn ja, richten Sie den Laserstrahl mit den Mikrometerschrauben an der 1. Vorstufe aus.

Abb. 13.5: Ausrichtung mit der LaserDiagnosticsSoftware LDS prüfen

In der LaserDiagnosticsSoftware LDS sind die Werte für den Verfahrweg Delta Z (mm) und der Grenzwert für die Abweichung frei wählbar.

Sie sollten unabhängig von der Bewertung der LaserDiagnosticsSoftware LDS zur Beurteilung des Fehlwinkels die beiden Ebenen 0 und 1 im Messfenster des Menü *Messung > Einzelmessung* kontrollieren. Der Füllfaktor sollte einen Wert zwischen 0,35 und 0,7 aufweisen.

Sollte der Laserstrahl zu groß für die möglichen Messfenster sein, müssen Sie den Wert für Delta Z (mm) halbieren. Wenn die beiden gemessenen Laserstrahlen zentrisch im Messfenster liegen ist die Ausrichtung abgeschlossen.

Der Messmode endet mit einer der folgenden Meldungen:

Das Gerät ist gut ausgerichtet:Die eigentliche Messung kann gestartet werden.	ОК
 Das Gerät muss nachjustiert werden. Der Fehlwinkel zwischen der Geräteachse des LaserQualityMonitor LQM und der Achse des Laserstrahls ist zu groß. Wiederholen Sie die Ausrichtung mit der LaserDiagnosticsSoftware LDS. 	NICHT OK BITTE NACHJUSTERIEN
 Das Gerät ist nicht ausreichend ausgerichtet, sodass der Laserstrahl den CCD-Sensor nicht trifft: Justieren Sie das Gerät mit der Ausrichthilfe neu. Wiederholen Sie die Ausrichtung mit der LaserDiagnosticsSoftware LDS. 	Keine Strahl gefunden! BITTE NACHJUSTERIEN

13.4 Messeinstellungen in der LaserDiagnosticsSoftware LDS eingeben

Wegen der Multifunktionalität der LaserDiagnosticsSoftware LDS für verschiedene PRIMES-Geräte müssen vor dem Messen einige gerätespezifische Einstellungen vorgenommen werden. Darüber hinaus müssen die kundenspezifischen System- und Strahlgeometrievorgaben berücksichtigt werden.

13.4.1 CCD Einstellungen (Menü Messung > CCD Einstellungen)

- 1. Starten Sie die LaserDiagnosticsSoftware LDS (siehe Kapitel 12 auf Seite 38).
- 2. Öffnen Sie das Dialogfenster *Messung* > *CCD Einstellungen* und wählen Sie im Feld den "Triggermodi" *Cw/Quasi-cw-Messung*.

Informationen zum Betrieb des LaserQualityMonitor LQM mit pepulster Laserstrahlung entnehmen Sie bitte dem Kapitel 20.6 auf Seite 117.

- 3. Wählen Sie im Feld "CCD-Betriebsmodi" Messdaten.
- 4. Wählen Sie im Feld "Wellenlänge" eine der validierten Wellenlängen.
- 5. Klicken Sie auf die Schaltfläche Aktualisieren.

Abb. 13.6: Einstellungen im Dialogfenster CCD Einstellung

Weitere Informationen zum Menu *Messung > CCD Einstellungen* finden Sie im Kapitel 12.4.5 auf Seite 52.

13.4.2 Messumgebung (Menu Messung > Messumgebung)

- 1. Öffnen Sie das Dialogfenster *Messung > Messumgebung*
- 2. Geben Sie im Feld "Wellenlänge" die aktuelle Wellenlänge ein.
- Die aktuelle Wellenlänge wird zur Berechnung des M²-Wertes benötigt.

Der einzugebende Abstand ist die Entfernung von der Laserquelle/Kollimator zur Eintrittsapertur des Basisgerätes LaserQualityMonitor LQM. Die Abstände zwischen dem Basisgerät LaserQualityMonitor LQM und der Eintrittsapertur der Vorstufe betragen:

 Vorstufe ≙ 94,3 mm
 Vorstufe ≙ 196,8 mm
 Eine Darstellung des Laserstrahlengangs im LaserQualityMonitor LQM finden Sie in der Abb. 20.7 auf Seite 115.

- 3. Geben Sie im Feld "Gerät-Offset" den aktuellen Abstand vom LaserQualityMonitor LQM zum Laser ein.
- 4. Geben Sie im Feld "Max. Leistung" die aktuelle maximale Leistung ein.
- 5. Geben Sie im Feld "Aktuelle Leistung" die aktuelle Leistung ein.
- 6. Klicken Sie auf die Schaltfläche Aktualisieren.

1	Messumgebung 🛛 🛛
	Bernerkung: Brennweite: 204.336 Mm Z-Achsen Offset: 0 Mm Y-Achsen Offset: 0 Mm
	Koordinaterrotation: 0 Grad Wellenlänge: 1064 • µm Gerät-Offset: 5.000 m Max.Leistung: 6000 W Aktuelle Leistung: M Aktuelisieren in Messung all.Ebenen aktualt

Abb. 13.7: Einstellungen im Dialogfenster Messumgebung

Weitere Informationen zum Menu *Messung > Messumgebung* finden Sie im Kapitel 12.4.1 auf Seite 48.

13.5 Flussdiagramm einer Messung

13.5.1 Laser manuell und mit der LaserDiagnosticsSoftware LDS ausrichten

- 1. Wählen Sie das korrekte Messobjektiv gemäß Kapitel 13.2 auf Seite 91 aus.
- 2. Reduzieren Sie die Laserleistung.
- 3. Richten Sie den LaserQualityMonitor LQM gemäß Kapitel 7.2 auf Seite 18 manuell zum Laserstrahl aus.
- 4. Richten Sie den LaserQualityMonitor LQM gemäß Kapitel 13.3 auf Seite 94 mit der LaserDiagnosticsSoftware LDS zum Laserstrahl aus.
- Die Referenzposition (z2) wird im Dialogfenster LQM Justage angezeigt.

13.5.2 Kaustikgrenzen bestimmen

13.5.3 Kaustikmessung durchführen

14 Wartung und Inspektion

Für die Festlegung der Wartungsinterwalle für das Messgerät ist der Betreiber verantwortlich. PRIMES empfiehlt ein Wartungsinterwall von 12 Monaten für Inspektion und Validierung oder Kalibrierung. Bei sporadischem Gebrauch des Messgeräts kann das Wartungsintervall auch auf bis zu 24 Monate festgelegt werden.

15 Lagerung

Bitte beachten Sie vor einer Lagerung bei wassergekühlten Geräten:

ACHTUNG

Beschädigung/Zerstörung des Gerätes durch austretendes oder gefrierendes Kühlwasser

Auslaufendes Kühlwasser kann das Gerät beschädigen. Die Lagerung des Gerätes bei Temperaturen nahe oder unter dem Gefrierpunkt und nicht vollständig entleertem Kühlkreis kann zu Geräteschäden führen.

- Entleeren Sie das Leitungssystem des Kühlkreises vollständig.
- Zum Entleeren des Kühlkreises kann der HP-LQM II/LQM 500 W mit gereinigter und trockener Druckluft gespült werden. Der optionale PowerLossMonitor PLM darf nicht mit Druckluft gespült werden.
- Um Verunreinigungen zu vermeiden, verschließen Sie bitte die Aperturen mit den mitgelieferten Deckeln oder optischem Klebeband.
- Auch wenn das Leitungssystem des Kühlkreises entleert wurde, verbleibt immer eine geringe Menge Restwasser im Gerät. Dieses kann austreten und ins Geräteinnere gelangen. Verschließen Sie die Anschlussstecker des Kühlkreislaufs mit den beiliegenden Verschlussstopfen.
- Lagern Sie das Gerät im originalen PRIMES-Transportkoffer.

16 Maßnahmen zur Produktentsorgung

PRIMES ist im Rahmen des Elektro- und Elektronikgerätegesetzes (ElektroG) verpflichtet, nach dem August 2005 gefertigte PRIMES-Messgeräte kostenlos zu entsorgen.

PRIMES ist bei der Stiftung Elektro-Altgeräte-Register ("EAR") als Hersteller unter der Nummer WEEE-Reg.-Nr. DE65549202 registriert.

Sie können zu entsorgende PRIMES-Messgeräte zur kostenfreien Entsorgung (dieser Service beinhaltet nicht die Versandkosten) an unsere Adresse senden:

PRIMES GmbH Max-Planck-Str. 2 64319 Pfungstadt Deutschland

17 Konformitätserklärung

Original-EG-Konformitätserklärung

Der Hersteller: PRIMES GmbH, Max-Planck-Straße 2, 64319 Pfungstadt erklärt hiermit, dass das Gerät mit der Bezeichnung:

LaserQualityMonitor (LQM)

Typen: LQM 5; LQM 20; LQM 200; HP-LQM

die Bestimmungen der folgenden einschlägigen EG-Richtlinien erfüllt:

 Maschinenrichtlinie 2006/42/EG

 EMV-Richtlinie 2014/30/EU
 Niederspannungsrichtlinie 2014/35/EU

 RoHS-Richtlinie 2011/65/EU zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten

 Richtlinie 2004/22/EG über Messgeräte

> Bevollmächtigter für die Dokumentation: PRIMES GmbH, Max-Planck-Str. 2, 64319 Pfungstadt

Der Hersteller verpflichtet sich, die technischen Unterlagen der zuständigen nationalen Behörde auf begründetes Verlangen innerhalb einer angemessenen Zeit elektronisch zu übermitteln.

Pfungstadt, 26.April 2017

RKrE

Dr. Reinhard Kramer, Geschäftsführer

18 Technische Daten

Kenndaten Messung	LQM 20	LQM 200/500	HP-LQM II			
Leistungsbereich bei 1064 nm	20 W	200W (opt. 500W)	10kW			
Pulsdauer	100 fs - cw					
Wellenlängenbereich	340–360nm (UV)/515–545nm (Grün)/1030–1090nm (NIR)					
Strahlabmessungen	1,5–15mm					
Beugungsmaßzahl M ²	1 - 50					
Max. Strahldivergenz	10mrad					
Versorgungsdaten						
Elektrische Versorgung	24V DC ± 5%, max. 1,8A					
Kühlung	Luftkühlung	Luftkühlung (opt. Wasserkühlung)	Wasserkühlung			
Kühlwasserdruck		min. 2 bar Primärdruck bei drucklosem Ablauf, max. 4 bar				
Empfohlener Kühlwasserdurchfluss		1,5l/min	7 – 8 l/min			
Kühlwassertemperatur T _{in} 1)	Taupunkttemperatur < T _{in} < 30 °C					
¹⁾ Soll außerhalb dieser Spezifikation gearbeitet werden, bitte vorher mit PRIMES Rücksprache halten.						
Kommunikation						
Interface		Ethernet				
Abmessungen und Gewichte						
Abmessungen (LxBxH)	285x190x180mm	350x230x190mm	480x300x190mm			
Gewicht	ca. 10kg	ca. 18kg	ca. 35 kg			
Umgebungsbedingungen						
Gebrauchstemperaturbereich	10 – 40 °C					
Lagerungstemperaturbereich	5 – 50 °C					
Referenztemperatur	22 °C					
Zulässige relative Luftfeuchte (nicht kondensierend)		10 - 80 %				

19 Abmessungen

19.1 LaserQualityMonitor LQM 20 Basisgerät

ه ای

Alle Angaben in mm (Allgemeintoleranz ISO 2768-v)

19.2 LaserQualityMonitor LQM 200/500 (ohne Bodenplatte)

Alle Angaben in mm (Allgemeintoleranz ISO 2768-v)

19.3 HighPower-LaserQualityMonitor HP-LQM II mit optionalem Faserhalter

Alle Angaben in mm (Allgemeintoleranz ISO 2768-v)

20 Anhang

20.1 Faseradapter montieren

GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Während der Messung wird der Laserstrahl auf das Gerät geleitet. Dabei entsteht gestreute oder gerichtete Reflexion des Laserstrahls (Laserklasse 4).

Der LaserQualityMonitor LQM darf in keiner der verfügbaren Konfiguration, ohne die folgenden Schutzmaßnahmen zu treffen betrieben werden. Auch bei einer gesteckten Faser im Kollimator oder im Faseradapter müssen sämtliche Schutzmaßnahmen eingehalten werden.

- Befestigen Sie den Faseradapter immer nur in Verbindung mit der Adapterplatte an die zweite Vorstufe.
- ► Tragen Sie Laserschutzbrillen, die an die verwendete Leistung, Leistungsdichte, Laserwellenlänge und Betriebsart der Laserstrahlquelle angepasst sind.
- ► Tragen Sie geeignete Schutzkleidung und Schutzhandschuhe.
- Schützen Sie sich vor Laserstrahlung durch trennende Vorrichtungen (z. B. durch geeignete Abschirmwände).
- 1. Schrauben Sie die Adapterplatte mit 4 Senkschrauben an die 2. Vorstufe.
- 2. Setzen Sie den Faseradapter in die Adapterplatte ein.
- 3. Schrauben Sie den Faseradapter mit 4 Zylinderschrauben an die Grundplatte.
- Achten Sie darauf, dass der Faseradapter vollständig in der Adapterplatte sitzt.

Abb. 20.1: Faseradapter mit der Adapterplatte montieren

20.2 Werkseinstellungen am LQM UV ändern

ACHTUNG

Beschädigung/Zerstörung der optischen Bauteile

Das Ändern der Werkseinstellungen kann während des Messvorgangs zu Schäden am Gerät führen.

Das Ändern der Werkseinstellung darf nur von geschultem und erfahrenen Fachpersonal vorgenommen werden. Im Zweifelsfall kontaktieren Sie bitte den PRIMES Service.

Die Länge des internen Strahlengangs wird durch die Bewegung der Prismen im Inneren des Gerätes beeinflusst. Abhängig von den optischen Eigenschaften und den Pulsparametern einer Laserquelle können Schäden an den interen optischen Bauteilen auftreten. Insbesondere bei kurzgepulsten UV-Lasern sind die Schäden vorhersehbar.

Um zu vermeiden, dass das Gerät beschädigt wird und eine Positionierung des Prismas in der Nähe des internen Fokus vermieden wird, kann ein verkürzter Positionierungsbereich gewählt werden. Der LaserQualityMonitor LQM UV wird standardmäßig mit dem verkürzten Positionierungsbereich ausgeliefert. Werkseinstellungen für Standard- und verkürzten Positionierbereich sind mit einem Jumper voreingestellt, siehe Abbildung unten.

Sie können den Verfahrweg durch das Umstecken einer Steckbrücke im Gerät wieder verlängern.

GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Bei geöffneter seitlicher Gehäuseplatte und eingeschaltetem Laser kann reflektierte Strahlung (Laserklasse 4) aus dem Gerät austreten.

- Schalten Sie den Laser aus, bevor sie die seitliche Gehäuseplatte abnehmen.
- 1. Schalten Sie den Laser aus.
- 2. Schalten Sie die Sannungsversorgung des LQM aus.
- Entfernen Sie die seitliche Gehäuseplatte des Gerätes, indem Sie die zwei Sperrriegel niederdrücken (siehe rote Pfeile).

O Die Seitenplatte springt heraus.

ACHTUNG

Elektrostatisch gefährdetes Bauteil

Die Platine kann durch elektrostatische Entladung zerstört werden.

- Legen Sie vor Umstecken des Jumpers ein ESD Erdungsarmband an.
- 4. Legen Sie vor dem Jumperwechsel ein ESD Erdungsarmband an.
- 5. Auf der nun sichtbaren Platine befindet sich eine Steckbrücke. Bringen Sie die Steckbrücke in die gewünschte Position.
- Setzen Sie die seitliche Gehäuseplatte in die Aufnahmen (siehe Abb. 13.1 auf Seite 92) im Gehäuse.
- 7. Klappen Sie die Gehäuseplatte nach oben, bis die 2 Sperrriegel einrasten.
- 8. Prüfen Sie, dass die seitliche Gehäuseplatte plan am Gehäuse anliegt.

20.3 HighYAG-Kollimationsmodul

GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Während der Messung wird der Laserstrahl auf das Gerät geleitet. Dabei entsteht gestreute oder gerichtete Reflexion des Laserstrahls (Laserklasse 4).

Der LaserQualityMonitor LQM darf in keiner der verfügbaren Konfiguration, ohne die folgenden Schutzmaßnahmen zu treffen betrieben werden. Auch bei einer gesteckten Faser im Kollimator oder im Faseradapter müssen sämtliche Schutzmaßnahmen eingehalten werden.

- Tragen Sie Laserschutzbrillen, die an die verwendete Leistung, Leistungsdichte, Laserwellenlänge und Betriebsart der Laserstrahlquelle angepasst sind.
- ► Tragen Sie geeignete Schutzkleidung und Schutzhandschuhe.
- Schützen Sie sich vor Laserstrahlung durch trennende Vorrichtungen (z. B. durch geeignete Abschirmwände).

PRIMES bietet als Option ein 67 mm-Kollimationsmodul an, das direkt auf der Vorstufe des HighPower-LaserQualityMonitor HP-LQM II montiert werden kann.

Kenndaten		
Brennweite	67 mm	
Max. zul. mittlere Leistung	6 kW (multi mode) 3 kW (single mode)	
Wellenlängenbereich	1025 - 1080 nm	
Design-Wellenlänge	1064 nm	
Zulässige Divergenz	160 mrad (Halbwinkel)*	
Kerndurchmesser der verwendeten Lichtleitfaser	10 – 1000 µm	
Lichtleitfaser-Stecker	LLK-D & QBH (LLK-B auf Anfrage)	
* Wird das 67 mm-Kollimationsmodul mit einem HP-LQM II betrieben, darf die Divergenz (Halbwinkel) maximal 110 mrad betragen.		

Tab. 20.1: Spezifikationen des 67 mm-Kollimationsmoduls

20.3.1 Kenndaten des Kühlsystems für das HighYAG-Kollimationsmodul

Kenndaten	
Max. Druck	6 bar
Min. Durchflussrate	2 l/min
Kühlwasserqualität	DI-Wasser mit Korrosionsinhibitor
Filterfeinheit	< 100 µm

Tab. 20.2: Spezifikationen des Kühlsystems

Abb. 20.2: Wasseranschlüsse

20.3.2 Schema des Kühlkreises für das HighYAG-Kollimationsmoduls

Wichtig: Der Kollimator darf nicht an den Kühlkreis des HP-LQM II angeschlossen werden, sondern an den Kühlkreis der Faser.

Abb. 20.3: Schema Kühlkreis des Kollimators

20.3.3 Schema des Kühlkreis für den HP-LQM II

Abb. 20.4: Schema Kühlkreis des HP-LQM II

20.3.4 HighYAG-Kollimationsmodul demontieren

Benötigtes Werkzeug:

- Innensechskantschlüssel SW 2,5 mm
- Innensechskantschlüssel SW 3 mm

ACHTUNG

Beschädigung/Zerstörung der optischen Bauteile

Eine verschmutzte Fokussieroptik kann sich erhitzen, die optischen Eigenschaften verändern und möglicherweise beschädigt werden.

Vermeiden Sie Verschmutzungen und f
ühren Sie die Arbeiten ausschlie
ßlich in einer sauberen Umgebung durch.

Abb. 20.5: Position des Kollimators

- 1. Schalten Sie die Spannungsversorgung des LQM aus.
- 2. Lösen Sie vier Gewindestifte A (SW 2,5 mm).
- 3. Entfernen Sie vier Abdeckungen B.
- 4. Entfernen Sie vier Schrauben C mit dem mitgelieferten Winkelschlüssel (SW 3 mm).
- 5. Befestigen Sie die Schutzabdeckung D.
- 6. Montieren Sie nach der Demontage des Kollimators den Faseradapter wieder an die Vorstufe.
- 7. Verschließen Sie die Apertur des Adapters mit der roten Kappe oder mit optischem Klebeband.

20.3.5 Auswahl des Messobjektivs bei einem montierten HighYAG-Kollimationsmodul

Beispiel 1:

 $\begin{aligned} \lambda &= 1030 \text{ nm} \\ M^2 &= 12 \\ d_{\text{Faserkern}} &= 100 \text{ } \mu\text{m} \\ f &= \text{Brennweite} \end{aligned}$

$$d_{\rm foc} = d_{\rm Faserkern} \quad \cdot \frac{f_{\rm LQM}}{f_{\rm col}}$$

 $d_{foc} = 299 \ \mu m$

Um eine Messung innerhalb von $\pm 3 z_R^2$ zu ermöglichen, sollte die berechnete Anzahl der belichteten Pixel im Fokus kleiner sein als 350.

Anzahl der belichteten Pixel bei 4,4 µm Pixelabstand = $\frac{d_{foc}}{4,4 \,\mu m} \cdot \beta$ (Vergrößerung des Messbjektivs 1 oder 5) Messobjektiv (MOB) 1:1 --> 299 µm / 4.4 µm x 1 = 68 ✓

Messobjektiv (MOB) 5:1 --> 299 µm / 4.4 µm x 5 = 340 ✓

Beispiel 2:

 $\begin{aligned} \lambda &= 1064 \text{ nm} \\ M^2 &= 5,5 \\ d_{\textit{Faserkern}} &= 50 \text{ } \mu\text{m} \end{aligned}$

$$\Theta = \frac{4 \cdot \lambda \cdot M^2}{\pi \cdot d_{Faserkern}}$$

 $\Theta = 150 \text{ mrad}$

$$d_{Rohstrahl} = \frac{\Theta \cdot f_{Koll}}{1 m}$$

 $d_{\text{Rohstrahl}} = \frac{150 \text{ mrad} \cdot 67 \text{ mm}}{1 \text{ m}} = 10,05 \text{ mm}$

Abb. 20.6: Anwendungsbereich der LQM-Objektive

MOB 1:1 --> ✓ MOB 5:1 --> ✓

Die zwei Beispiele zeigen die Berechnung der Strahlparameter bei vorgegebener Brennweite des Kollimators. Die Berechnung kann auch mit anderen Kollimator-Brennweiten durchgeführt werden.

20.4 Optischer Pfad im HighPower-LaserQualityMonitor HP-LQM II (mit Kollimator)

Abb. 20.7: Optischer Pfad im HP-LQM II (mit Kollimator)

Länge des optischen Pfades (_____):

Erste Vorstufe <--> LQM = 25 mm + 69,3 mm = 94,3 mm Zweite Vorstufe <--> LQM = 25 mm + 110,8 + 61 mm = 196,8 mm

20.5 Beschreibung des MDF-Dateiformats

Das MDF-Dateiformat ist ein einfaches ASCII-Format, das die wichtigsten Daten einer Strahlvermessung die räumliche Leistungsdichteverteilung enthält. MDF steht für "mailable data format". Durch dieses vereinheitlichte Format sollen Konversionsprobleme zwischen unterschiedlichen Auswerteprogrammen reduziert werden und auch eine sichere Datenübertragung auch z. B. durch E-Mail gewährleistet werden.

Die Dateien sind wie folgt gegliedert:

- 1. Zeile: MDF100 (file identifier)
- 2. Zeile: Zahl der Bildpunkt: in x-Richtung in y-Richtung
- 3. Zeile: Größe des Messbereichs: Länge in x (mm) Länge in y (mm)
- 4. Zeile: Position entlang der Strahlachse: z-Position (mm)
- 5. Zeile: Transversale Position des Zentrums des Messbereichs: x-pos y-pos (mm)
- 6. Zeile: Verstärkung des Messsignals: Verstärkung (dB)
- 7. Zeile: Zahl der Mittelungen: Zahl
- 8. Zeile: Offset-Wert der vom Messgerät angezeigt wird: Offset Wert
- 9. Zeile: Wellenlänge-Wert
- 10. Zeile: Leistung-Wert
- 11. Zeile: Brennweite-Wert
- 12. Zeile: Datum, Uhrzeit-Wert

in den folgenden Zeilen stehen die Daten. Es stehen nicht mehr als 80 Zeichen pro Zeile.

Kommentare

Kommentare werden als zusätzliche Zeilen eingefügt, in der Zeile nach dem file identifier. Die Kommentarzeile beginnen jeweils mit einem Semikolon.

Beispiel:

....

20.6 Messen von gepulster Laserstrahlung

Der CCD-Sensor des LaserQualityMonitor LQM besitzt eine Dynamik von 55 dB. Um diese zu erweitern wurde eine Integrationszeitsteuerung implementiert. Die Integrationszeit kann zwischen 12 µs und 186 ms frei gewählt werden.

Ist im Dialogfenster *Einzelmessung* bzw. *Kaustikmessung* die Funktion *Optim.* (Optimize) aktiviert, bestimmt die LaserDiagnosticsSoftware LDS automatisch – über eine Reihe von Vormessungen – bei welcher Integrationszeit das Ausgangssignal eines Pixel des Arrays übersteuert ist. Die optimale Integrationszeit liegt dann ein wenig darunter.

 Triggermodi CCD Cw / Quasi-cw-Me Getriggerter Betrie 	ssung b	CCD Einstellung -			
CMOS Clauer-Trigger Trigger nit Delay Trigger nit Skiel u Trigger mit Skiel u Trigger mit Skiel u Trigger mit Skiel u	iolgender Pulstänge en Puls Id Zeilenkonversion Ur einzelnen Puls inzel-Pixel ährend Pixelpause	Delay: Integrationsdauer: CCD-Betriebsmo C Untergrund C Rohdaten T Messdaten	464 464 di	μ5 μs	
Filterrad Filter referenced: Selected Filter: Filter Factor:	Vellenlänge Wellenlänge: Vergrößerung: 1	0.532 - Trigger 0.532 - Triggerle 7rigger C 249 Transfer	Level nuell vel: hannel: N Signal: D Test	o Transfer	1

Abb. 20.8: CCD Einstellungen im Dialogfenster CCD Einstellung

Die Integrationszeitsteuerung vergrößert die Dynamik des CCD-Sensors von 55 dB auf über 130 dB. Ist die Funktion **Optim.** deaktiviert, kann die Integrationszeit im Dialogfenster **CCD Einstellung** in der LaserQualityMonitor LQM (siehe Abb. 20.8 auf Seite 117) fest vorgegeben werden.

Die Integrationszeitsteuerung alleine reicht nicht aus, um die komplette Palette der gepulsten Laser vermessen zu können. Handelt es sich zum Beispiel um einen gepulsten Laser mit sehr niedriger Pulsfrequenz (< 5 Hz), genügt die maximale Integrationszeit von 186 ms nicht mehr. Aus diesem Grund wurden neben der Integrationszeitsteuerung auch noch eine Triggeroption und eine Verzögerungszeit (Delay) implementiert.

Bei den Triggern kann der interne Trigger und der externe Trigger unterschieden werden. Als interner Trigger fungiert eine Photodiode hinter einem Prisma (siehe Abb. 5.2 auf Seite 15). Den Schwellenwert des Triggers kann der Anwender bestimmen (0 ... 4096). Der Trigger ist auf den Wert 2001 voreingestellt. Diese Einstellung funktioniert für den Großteil aller Anwendungen.

Abb. 20.9: Einflussmöglichkeiten auf die Ablaufsteuerung des CCD-Sensors

Die Abb. 20.9 auf Seite 118 zeigt, dass der Trigger zusammen mit der einstellbaren Verzögerungs- und Integrationszeit in die Ablaufsteuerung des CCD-Sensors eingreift. Der Anwender kann nun diskrete Zeiträume definieren, in denen der LQM messen darf. Der externe Trigger wird über ein dafür vorgesehene BNC-Buchse zugeführt. Er greift gleichermaßen in die Ablaufsteuerung ein, sodass sich in der Handhabung keine Unterschiede zu dem internen Trigger ergeben.

Sowohl die Einstellung der Verzögerungszeit (Delay), als auch die Triggerart (externer bzw. interner Trigger) werden im Dialogfenster *CCD Einstellung* der LaserQualityMonitor LDS (Abb. 7.14) vorgenommen. Wenn Sie ein Delay oder eine Integrationszeit eingeben, so müssen Sie diese Eingaben immer mit der Schaltfläche *Aktualisieren* bestätigen.

Es ergeben sich folgende Zeitkonstanten:

Timeout:	20 sec (Standard)
minimale Integrationszeit:	12 µs
maximale Integrationszeit:	186 ms
minimaler Delay:	12 µs
maximaler Delay:	186 ms

Die lange Timeoutzeit (20 sec) hilft auch Laser zu vermessen, bei denen der Puls manuell ausgelöst werden muss. Ist dies der Fall, wird zuerst eine Messung gestartet. Der LaserQualityMonitor LQM fährt in die gewünschte Position und durchläuft intern eine bestimmte Routine. Wenn der LaserQualityMonitor LQM bereit für einen Trigger ist, wird dies im Dialogfenster *Freie Kommunikation* angezeigt. Direkt nach dem Start der Messung ist ein Kommunikationsfluss zu sehen.

Stoppt dieser mit dem Anzeigetext *waiting for Trigger*, wartet der LaserQualityMonitor LQM auf einen Trigger.

Jede Messung des LaserQualityMonitor LQM besteht aus einer Dunkelmessung und einer Messung mit Phototransfer. Dies gilt für den getriggerten wie für den ungetriggerten Betrieb. Aus diesem Grund werden für jede Messung mindestens zwei Triggersignale bzw. zwei Laserpulse benötigt.

20.6.1 Auswahl der Messkonfiguration

Es müssen verschieden Messoptionen unterschieden werden:

- Messung einer einzelnen Ebene oder einer kompletten Kaustik
- Messung eines kompletten Pulses oder nur eines Ausschnittes
- Messung mit fester Integrationszeit oder mit Integrationszeitsteuerung
- Messung im getriggerten oder ungetriggerten Betrieb
- Variation der optimalen Integrationszeit durch Änderung der Abschwächung

Kombiniert man diese Messoptionen mit den Pulsparametern:

- Pulsdauer: fs ms
- Pulsfrequenz: 1 Hz 1 kHz

ergeben sich viele Möglichkeiten. Im Folgenden kann lediglich eine grobe Struktur aufgezeigt werden, die bei der Auswahl der Messeinstellung helfen soll.

20.6.2 Einfluss der Pulsparameter auf die Integrationszeitsteuerung

Die softwaregesteuerte Integrationszeitsteuerung geht immer von einem kontinuierlichen Laserstrahl aus. Aus diesem Grund kann es bei langsam gepulsten Lasern (< 500 Hz) oder bei Lasern mit hoher Pulsenergie (Integrationszeit sehr kurz) zu einer Quantisierung der Integrationszeit kommen. Die Tab. 20.3 auf Seite 119 und das Diagramm in Abb. 20.10 auf Seite 120 verdeutlichen dies.

Pulsfrequenz	Anzahl der Pulse in		
in Hz	186 ms	1 ms	
1	0	0 - 1	
5	1	0 - 1	
10	2	0 - 1	
50	9	0 - 1	
100	19	0 - 1	
200	37	0 - 1	
500	93	0 - 1	
1000	186	1 - 2	
2000	372	2 - 3	
5000	930	5,00	
10000	1860	10,00	

Tab. 20.3: Anzahl der detektierten Pulse in Abhängigkeit von der Integrationszeit und der Pulsfrequenz

Abb. 20.10: Prozentuale Änderung der detektierten Energie bei Wegfall von genau einem Puls in Abhängigkeit der Pulsfrequenz

In der Tab. 20.3 auf Seite 119 sind für verschiedene Pulsfrequenzen die Anzahl der detektierten Pulse in der maximalen Integrationszeit (186 ms) und in einer Integrationszeit von 1 ms aufgetragen. Die Quantisierung mit niedrigeren Pulsfrequenzen wird in der Spalte der 186 ms Integrationszeit deutlich. Während bei einer Pulsfrequenz von 10 kHz noch 1860 Pulse detektiert werden, sind es bei 10 Hz nur noch einer oder maximal zwei.

Ist die Messung im Fall der 10 Hz Pulsfrequenz übersteuert und die Software versucht die Integrationszeit anzupassen, gibt es nur drei mögliche Ergebnisse. Der Energieeintrag bei einer Messung bleibt gleich, er nimmt um 50 % ab, oder er ist Null. Diese Abstufung ist bei einer Pulsfrequenz von 10 kHz weit weniger signifikant. In der Abb. 20.10 auf Seite 120 ist dieser Zusammenhang verallgemeinert dargestellt. Es ist zu erkennen, dass ab einer Pulsfrequenz von 500 Hz der minimale Sprung bei einer Verkürzung der Integrationszeit 1 % beträgt.

Es kommt aber nicht nur durch kleine Pulsfrequenzen zu einer Quantisierung. Ist die Pulsenergie sehr hoch und es ist nicht möglich die Abschwächung weiter zu erhöhen, kommt es zu kürzeren Integrationszeiten. In der Tab. 20.3 auf Seite 119 ist neben der maximalen Integrationszeit auch eine Integrationszeit von 1 ms aufgetragen. In diesem Fall reicht eine Pulsfrequenz von 500 Hz nicht aus, um über die Integrationszeitsteuerung den Energieeintrag pro Messung "quasi" kontinuierlich zu regeln.

Insgesamt können immer vier Zustände auf dem Weg von niedrigen zu hohen Pulsfrequenzen, bzw. von kurzen zu langen Integrationszeiten unterschieden werden. Verdeutlicht wird dies durch das folgende Beispiel für die Messung von gepulster Laserstrahlung in einem ungetriggerten Betrieb.

Abb. 20.11: Messen mit verschiedenen Integrationszeiten

0	12 – 200 µs:	Sporadische Messung von Pulsen
0	200 – 400 µs:	1 Puls
Ø	200 – 2 ms:	Quantisierungsrauschen durch verschiedene Anzahl von Pulsen
4	2 – 200 ms:	Quasi kontinuierliche Integrationszeitsteuerung

Die Abb. 20.11 auf Seite 121 zeigt eine gepulste Bestrahlung. Die Pulspausen betragen 200 µs. Die nötige Integrationszeit des Sensors hängt direkt von der Intensität des Laserstrahls ab.

Ist sie wie in Fall 1 kleiner als die Pulspause, liegt statistisch maximal 1 Puls in der Messung. Die Wahrscheinlichkeit, dass sowohl während jeder Messung zur Integrationszeitsteuerung, als auch während der eigentlichen Messung ein Puls liegt, ist gering.

Liegt die optimale Integrationszeit genau zwischen der einfachen und der doppelten Dauer der Pulspause, liegt immer genau 1 Puls in jeder Messung (Fall 1). Das ist der ideale Zustand, um in einer Ebene zu messen. Eine Vermessung der Strahlkaustik ist in diesem Setup ebenfalls möglich, da die Dynamik des CCD-Sensors im Einzelpuls 55 dB beträgt, wohingegen im relevanten Kaustikbereich die Intensität nur um den Faktor 5 variiert. Hierbei muss darauf geachtet werden, dass die Signalsättigung bei der Messung in der Strahltaille möglichst hoch ist. Nur dann ist gewährleistet, dass auch bei Messung der Ebenen weit außerhalb des Fokus noch ein ausreichendes S/N-Verhältnis zugrunde liegt.

Fall 3 beschreibt den Fall, bei dem die Integrationszeit zwischen der einfachen und der zehnfachen Dauer der Pulspause liegt. In diesem Bereich macht sich jeder Puls mehr oder weniger während der Integrationszeit als deutlicher Signalsprung bemerkbar. Die Integrationszeitsteuerung ist nur quantisiert möglich. Die Messergebnisse haben häufig ein schlechtes S/N-Verhältnis oder sind übersteuert. Wird die Integrationszeit noch höher, werden die Signalsprünge flacher. Die Integrationszeitsteuerung funktio-

niert quasi kontinuierlich (Fall 4). Der zu vermessende Laser kann nun wie ein cw-Laser vermessen werden.

Mit Hilfe von Neutralglasdichtefiltern, welche in den Strahlengang eingebracht werden können, ist es möglich, stets in dem gewünschten Bereich 1 - 4 zu arbeiten.

Zusätzlich ist der LaserQualityMonitor LQM, wie in der Eingangsbetrachtung bereits erwähnt, mit diversen Möglichkeiten zur Triggerung ausgestattet. Zusammen mit der Integrationszeitsteuerung und einer Verzögerungszeitsteuerung kann so auch in Fall 1 sinnvoll gemessen werden.

Prinzipiell kann man diese 4 Fälle in zwei Gruppen einteilen. Fall 1 und 2 müssen im getriggerten Messmode gemessen werden. Fall 4 hingegen lässt sich am besten ungetriggert im Messmode cw vermessen. Fall 3 sollte durch eine geeignete Filterauswahl ganz vermieden werden.

Zur Falleinteilung des zu vermessenden Laserstrahls soll das nachstehende Diagramm in Abb. 20.12 auf Seite 122 helfen.

Abb. 20.12: Auswahl des Messmodes über die Laserparameter

Befindet sich der Laser im blauen Feld, wählt man am besten den Messmode cw. Es muss aber darauf geachtet werden, dass je näher man der Grenze zum getriggerten Betrieb kommt, desto größer muss die Integrationszeit sein, um den quasi-cw Fall zu gewährleisten. Als Faustformel gilt, dass die Integrationszeit im Fokus ungefähr der Zeit für 35 Pulse entsprechen soll. Unterschreitet der zu vermessende Laser die Grenzfrequenz von ca. 500 Hz sollte man in den getriggerten Messmodus wechseln.

Während es sich im Messmode cw oder quasi-cw fast immer anbietet, mit der Integrationszeitsteuerung zu messen (optim. Funktion), kommt sie im getriggerten Messmode nur bei sehr lagen Pulsdauern (>1 ms) sinnvoll zum Einsatz. Mit Hilfe der Abschwächungsfilter wird die Integrationszeit hierbei so eingestellt, dass sie nur einen Bruchteil der Pulsdauer beträgt. Der Trigger gibt dem Messgerät dann nur den Startzeitpunkt der Messung vor. Die Integrationszeit kann im Verlauf der Kaustikmessung größer bzw. kleiner werden, ohne den Pulszug zu verlassen (siehe Abb. 20.13 auf Seite 122 bzw. Bsp. 2).

Abb. 20.13: Messparameter bei gepulsten Lasersystemen mit Pulsdauern größer 1ms

Für alle anderen Fälle empfiehlt es sich eine Integrationszeit fest vorzugeben, um so über eine geschickte Auswahl der Filter und der Delay- und Integrationszeit immer eine feste Anzahl von Pulsen zu vermessen (siehe Bsp. 1).

20.6.3 Beispiele für den getriggerten Messbetrieb

Beispiel 1: Pulsdauer 50 ns Pulsfrequenz 1 kHz

LaserQualityMonitor LQM-Einstellungen: Delay: 950 µs Integrationsdauer: 0,1 ms Triggerkanal: externer Trigger

Je nachdem wie exakt man den Trigger auslösen kann, kann man die Integrationszeit auch verlängern bzw. verkürzen.

Messen:

Eine Messung starten. Nun hat man 20 sec Zeit, einen Trigger auszulösen. Durch den Delay-Wert von 0,95 ms und der fest vorgegebenen Integrationszeit von 100 µs detektiert der LaserQualityMonitor LQM den zweiten Laserpuls nach Auslösen des Triggers.

Beispiel 2: Pulsdauer 1 ms

LaserQualityMonitor LQM-Einstellungen:		
Delay:	12 µs	
Integrationsdauer:	1 ms	
Triggerkanal:	Interner Trigger	

Messen:

Eine Messung starten. Nun hat man 20 sec Zeit einen Laserpuls auszulösen. Der LaserQualityMonitor LQM misst 12 µs nachdem der Trigger ausgelöst wurde. In diesem Beispiel werden die ersten 12 µs des Laserpulses nicht gemessen.

Beispiel 3: Messung von genau einem Puls Triggermode: Getriggerter Betrieb

Im Dialogfenster **CCD Einstellung** gibt es das Auswahlmenü **CCD-Betriebsmodi**. Man kann dort zwischen Untergrund, Rohdaten und Messdaten wählen.

Beim Messen im Rohdaten-Mode wird das CCD ganz normal ausgelesen. Es wird jedoch keine zweite Messung, die Dunkelmessung, gemacht. Je nach Anwendungsfall, Wellenlänge und Integrationszeit sind deutlich Fehler im Untergrund auszumachen.

In diesem Mode zu messen ist sinnvoll, wenn nur genau ein Puls ausgelöst werden kann. Weil es keine zweite Messung, die Dunkelmessung gibt, genügt dieser eine Puls. Hierbei sollte man die Abschwächung so wählen, dass die Integrationszeit länger als die Pulsdauer ist. Auf diese Weise können die meisten Untergrundeffekte vermieden werden. Wird die Integrationszeit allerdings zu lang, kommt es zu einer gesteigerten Generation von Dunkelektronen.

Möchte man den kompletten Puls aufzeichnen, muss extern getriggert werden. Hierbei sollte der Mindestdelay zwischen Trigger und Start der Messung 12 µs betragen.

20.6.4 Zusammenfassung

Ist der Laser mit einer hohen Frequenz (> 500 Hz) gepulst oder sind die Pulsdauern sehr groß (> 1ms), empfiehlt es sich mit der **Optim.**-Option zu messen. Auf diese Weise kann die Integrationszeit während einer Kaustikmessung variiert bzw. optimiert werden.

Wählen Sie bei den langen Pulsdauern die Abschwächung so, dass die Integrationszeit auch außerhalb des Fokus kleiner ist als die Pulsdauer ist.

Bei den hohen Pulsfrequenzen muss die Abschwächung hingegen so gewählt werden, dass während eines Messzyklus in ausreichender Zahl Laserpulse aufintegriert werden. Kommen zu wenige Pulse während einer Integrationszeit, ändert sich die Anzahl der Photoelektronen mit jedem Puls zu stark. Durch die Regelroutinen der LDS kommt es dann zu statistisch übersteuerten Messungen.

Vermeiden Sie auf jeden Fall, dass die Integrationszeit kleiner als die Pulspausen wird. Ist das der Fall, kann mit dem LaserQualityMonitor LQM ungetriggert nicht mehr richtig gemessen werden.

Manchmal ist es deshalb sinnvoll die Abschwächung so zu dimensionieren, dass genau ein Puls reicht um den Sensor im Fokus zu belichten. Dann kann man über einen festen Delay und der bei der Fokusmessung ermittelten Integrationszeit eine Kaustik messen. Die Dynamik des CCD-Sensors (55 dB) reicht aus, um mit einem akzeptablen S/N-Verhältnis die Kaustik durchzumessen.

21 Grundlagen der Strahldiagnose

21.1 Laserstrahlparameter

Abb. 21.1: Skizze zur Definition der Strahlparameter

21.1.1 Rotationssymmetrische Strahlen

Entsprechend ISO 11145 und ISO 11146 werden für die Charakterisierung eines rotationssymmetrischen Strahls drei Strahlparameter benötigt.

- die z-Position der Strahltaille (Fokus) z₀
- den Durchmesser der Strahltaille d_{ae}
- den Fernfelddivergenzwinkel Θ

Mit Hilfe dieser drei Größen ist es möglich den Strahldurchmesser an jedem Ort entlang der Ausbreitungsrichtung zu bestimmen. Als Einschränkung gilt: Der Divergenzwinkel muss kleiner sein als 0,8 rad und Fokusdurchmesser sowie Divergenzwinkel sind nach der 2. Moment-Methode berechnet worden.

$$d_{\sigma}(z)^{2} = d_{\sigma0}^{2} + (z - z_{0})^{2} \cdot \Theta_{\sigma}^{2}$$
(1.1)

Weiterhin wird die Strahlausbreitung durch den sogenannten Strahlpropagationsfaktor K beschrieben.

$$K = \frac{1}{M^2} = \frac{4 \cdot \lambda}{\pi} \cdot \frac{1}{d_{\sigma 0} \cdot \Theta_{\sigma}}$$
(1.2)

mit:

K = Strahlpropagationsfaktor
 M² = Beugungsmaßzahl
 λ = Wellenlänge in einem Medium mit der Brechzahl n

 Θ_{σ} = Divergenzwinkel

 d_{σ_0} = Strahltaillendurchmesser

Das sich hieraus ableitende Strahlparameterprodukt ist eine Erhaltungsgröße, solange abbildungsfehlerfrei und aperturfreie Komponenten verwendet werden.

$$\frac{d_{\sigma 0} \cdot \Theta_{\sigma}}{4} = \frac{\lambda}{\pi \cdot K} \tag{1.3}$$

Ein wichtiger Strahlparameter ist die Rayleighlänge:

Die Rayleighlänge ist die Strecke in Richtung der Ausbreitung, in der sich der Laserstrahl um $\sqrt{2}$ vergrößert hat. Sie berechnet sich nach folgender Formel:

$$z_{R} = \frac{d_{\sigma 0}}{\Theta_{\sigma}} = \frac{\pi \cdot d_{\sigma 0}^{2}}{4 \cdot \lambda \cdot M^{2}}$$
(1.4)

21.1.2 Nicht rotationssymmetrische Strahlen

Um nichtrotationssymmetrische Strahlen beschreiben zu können, werden folgende Strahlparameter benötigt.

- die z-Positionen der Strahltaille (Fokus) z, und z,
- die Durchmesser der Strahltaille $d_{\sigma_{0x}}$ und $d_{\sigma_{0y}}$
- die Fernfelddivergenzwinkel $\Theta_{\sigma x}$ und $\Theta_{\sigma y}$
- den Winkel φ zwischen der x-Ächse des Messsystems und der x-Achse des Strahls (die x-Achse des Strahls ist jede, die am nächsten zur x-Achse des Messsystems liegt.)

Abb. 21.2: Strahlparameter des nichtrotationssymmetrischen Strahls

Mit Hilfe der oben genannten Parametern lassen sich alle Strahlen, die sich durch zwei zueinander senkrecht stehenden Achsen charakterisieren lassen, beschreiben.

Die weiteren Strahlparameter, wie die K-Zahl oder die Beugungsmaßzahl, werden richtungsabhängig mit den selben Gleichungen berechnet, wie die der rotationssymmetrischen Strahlen. Es ergeben sich somit stets zwei Parameter wie z. B. Kx und Ky.

21.2 Berechnung der Strahldaten

Es sind - zur Berechnung der Strahldaten - sowohl die von dem ISO Standard 11146 geforderten Algorithmen zur 2. Moment Methode implementiert, als auch die in der Industrie weit verbreitete 86 %-Methode. Für den Gauß'schen TEM00-Mode liefern beide Methoden sehr ähnliche Ergebnisse, wohingegen für die meisten anderen realen Laserstrahlen die 2. Moment-Methode größere Strahldurchmesser berechnet als die 86%-Methode.

Laserstrahlung ist oft eine Mischung aus verschiedenen Moden mit unterschiedlichen Frequenzen und Kohärenzeigenschaften. Alle bekannten Messverfahren liefern nur einen kleinen Teil der Information über den Strahl. Deswegen hängen die berechneten Strahlparameter immer vom Messprinzip ab. Für die Interpretation der Messergebnisse ist es wichtig, sich dessen bewusst zu sein.

Die Berechnung des Strahlradius setzt drei vorbereitende Schritte voraus.

- 1. Messung der Leistungsdichteverteilung
- 2. Bestimmung des Nulllevels
- 3. Bestimmung der Strahllage

21.2.1 Bestimmung des Nulllevels

Der Nulllevel kann zum Beispiel mit einem Histogramm bestimmt werden, in dem die Häufigkeit der gemessenen Leistungsdichtewerte aufgetragen ist (siehe Abb. 21.3 auf Seite 128).

Abb. 21.3: Schematisches Histogramm der abgetasteten Messpunkte

Das Histogramm zeigt, wie häufig eine bestimmte Leistungsdichte gemessen wurde. Das Maximum dieser Kurve gibt die Leistungsdichte des Nulllevels an. Diese Leistungsdichte wird von allen gemessenen Werten der Leistungsdichteverteilung abgezogen.

Es ist wichtig den Nullevel genau zu messen, weil schon ein kleiner Fehler zu einer drastischen Änderung des Berechnungsvolumen führt. Dies wiederum hat große Auswirkung auf den berechneten Strahlradius.

21.2.2 Bestimmung der Strahllage

Die Strahllage wird nach der 1. Moment-Methode bestimmt. Das heißt, es wird der Schwerpunkt der Leistungsdichteverteilung (E(x,y,z)) bestimmt.

$$\overline{x} = \frac{\iint x \cdot E(x, y, z) dx dy}{\iint E(x, y, z) dx dy} \qquad \overline{y} = \frac{\iint y \cdot E(x, y, z) dx dy}{\iint E(x, y, z) dx dy}$$
(1.5)

Nachdem die Strahllage bekannt ist, gibt es - wie eingangs des Kapitels erwähnt - zwei Möglichkeiten, den Strahlradius zu berechnen.

21.2.3 Radiusbestimmung mit dem 2. Moment der Leistungsdichteverteilung

Die Berechnung des Strahlradius nach dem 2. Moment der Leistungsdichteverteilung erfolgt nach Gleichung (1.6).

$$\sigma_x^2(z) = \frac{\iint (x - \bar{x})^2 \cdot E(x, y, z) \, dx \, dy}{\iint E(x, y, z) \, dx \, dy} \qquad \sigma_y^2(z) = \frac{\iint (y - \bar{y})^2 \cdot E(x, y, z) \, dx \, dy}{\iint E(x, y, z) \, dx \, dy} \tag{1.6}$$

Ausgehend von Gleichung (1.6) berechnet sich der Strahldurchmesser folgendermaßen:

$$d_{\sigma x}(z) = 4 \cdot \sigma_{x}(z)$$

$$d_{\sigma y}(z) = 4 \cdot \sigma_{y}(z)$$
(1.7)

Dieser Algorithmus beinhaltet das Produkt aus der Leistungsdichte und dem Abstandsquadrat zum Schwerpunkt. Er funktioniert nur zuverlässig, wenn die Nullebene richtig bestimmt ist. Der Füllfaktor, der Quotient aus Strahldurchmesser durch Integrationsbereich/Messfenstergröße, ist eine weitere wichtige Größe. Er sollte stets einen Wert zwischen 0,35 und 0,7 haben.

21.2.4 Radiusbestimmung mit der Methode des 86% igen Leistungseinschlusses

Der erste Schritt ist die Bestimmung des Volumens der Leistungsdichteverteilung. Es ist proportional zur Gesamtleistung. Die Addition aller Leistungsdichtewerte und ihre Multiplikation mit den Pixelabmessungen ergibt das Volumen und somit die Gesamtleistung. Ein zuverlässiger Nulllevelabzug ist auch hier die wesentliche Basis.

Ausgehend von dieser Gesamtleistung wird der Bereich betrachtet, der 86 % der Gesamtstrahlleistung einschließt. Diese Strahlleistung muss innerhalb des Strahlradius liegen.

Typischerweise startet die Integration bei den Werten maximaler Leistungsdichte. Dann wird der Integrationsbereich solange vergrößert, bis 86 % der Gesamtleistung innerhalb liegen. Bei der Integration wird die Zahl der Bildpunkte gezählt. Daraus kann schließlich die 86 %-Fläche und somit der Strahldurchmesser bestimmt werden. Für zirkulare grundmodeähnliche Strahlen arbeitet das Verfahren gut.

Abb. 21.4: Grafische Darstellung der Berechnung des 86%-Radius

- a) Zeigt die Leistungsdichteverteilung.
- b) Zeigt nur die Bildpunkte, die zusammen 86 % der Leistung einschließen.Die Bildpunkte mit niedriger Leistung sind zur Verdeutlichung auf Null gesetzt.
- c) Zeigt einen Schnitt beim "86 %-Leistungseinschluss".
- Das Niveau liegt bei 14 % der maximalen Leistung.
- d) Zeigt den Schnitt durch die Verteilung bei 86 %.

21.2.5 Messfehler

Unabhängig von dem Messprinzip gibt es viele Fehlerquellen bei der Bestimmung des Strahlradius.

- die Bestimmung des Nullevel
- die endliche Größe des Messfensters
- das Auflösungsvermögen in x- und y- Richtung
- das Auflösungsvermögen bezogen auf die Intensität der Bestrahlung

21.2.6 Fehler bei der Nulllevelbestimmung

Die Bestimmung des Strahltaillenradius reagiert sehr stark auf die Änderung der Nullebene. Das ist unabhängig davon, ob nach der 86 % oder der 2. Moment Methode gerechnet wird.

Abb. 21.5: Gaußsche Intensitätsverteilung, Nullpegel gesenkt (links) und angehoben (rechts)

Abb. 21.5 auf Seite 131 macht dies deutlich. Wird der Nullpegel abgesenkt (linke Seite), vergrößert sich das Gesamtvolumen zwischen den Messwerten und dem Nullpegel. Durch diese Vergrößerung errechnet sich nach der Kurvengleichung ein größerer Strahlradius. Umgekehrt verringert sich der Strahlradius wenn das Volumen, bei Anheben des Nullpegels, zu klein berechnet wird.

21.2.7 Übersteuerung des Signals

Hohe Signalamplituden werden durch die begrenzte Dynamik des Systems beschnitten. Fehlen die hohen Leistungsdichten bei der Berechnung der Strahlgeometrie, berechnet der Algorithmus den Strahl stets zu groß. Durch Vergrößern der Abschwächung kann man dem entgegenwirken.

21.2.8 Fehler durch falsche Wahl der Messfenstergröße

Für die korrekte Normierung des Volumens unterhalb der gemessenen Verteilung ist es notwendig, dass die gesamte Laserstrahlung innerhalb des Messfensters liegt. Da die Intensitätsverteilung im Prinzip unendlich ausgedehnt ist, liegt stets ein Bruchteil der Strahlleistung außerhalb des Messbereichs.

Im Folgenden wird zur Normierung des Strahlradius dieser ins Verhältnis zur halben Fenstergröße gesetzt. Die so definierte Größe wird als Füllfaktor F bezeichnet.

Abb. 21.6: Fehler bei der Strahlradiusbestimmung durch Offsetverschiebung der Nullpunktebene für verschiedene Offsetpegel (gaußförmige Intensitätsverteilung)

In Abbildung Abb. 21.6 auf Seite 132 ist die Auswirkung eines Füllfaktor > 0,7 deutlich zu sehen. Für Gaußähnliche Strahlen sollte der Füllfaktor stets unter 0,6 und über 0,4 gehalten werden, um den Fehler klein zu halten. Für Top-Hat Verteilungen liegt die Grenze bei etwa 0,9.

21.3 Formeln, bzw. Algorithmen zur Rohstrahlrückberechnung des LQM

Zur Berechnung der Rohstrahlparameter aus den gemessenen Strahlparametern des Fokus wird der in der Norm ISO 11146 beschriebene Formelsatz verwendet. Index F kennzeichnet die Strahlparameter des Fokus.

Abb. 21.7: Rohstrahlrückrechnung

Strahltaillenradius im Rohstrahl

$$w_0 = \frac{f}{\sqrt{z_{RF}}^2 + \Delta^2} \cdot w_{0F}$$

Fernfelddivergenz im Rohstrahl

$$\Theta = \frac{\Theta_F \cdot \sqrt{z_{RF}^2 + \Delta^2}}{f}$$

Lage der Strahltaille im Rohstrahl

$$z_0 = \frac{f^2}{z_{RF}^2 + \Delta^2} \cdot \Delta + f$$

Rayleighlänge im Rohstrahl:

$$z_R = \frac{f^2}{z_{RF}^2 + \Delta^2} \cdot z_{RF}$$

Mit der Fokuslagendifferenz

$$\Delta = Z_{0F} - Z_{ref}$$

Strahldurchmesser auf der Fokussieroptik

$$d_L = \Theta_F \cdot \left(f + z_{ref} - z_{0F} \right)$$

